【真题汇编】2022年江门市中考数学模拟真题练习 卷(Ⅱ)(精选)
展开2022年江门市中考数学模拟真题练习 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列二次根式的运算正确的是( )
A. B.
C. D.
2、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )
A.60 B.30 C.600 D.300
3、下列计算正确的是( )
A. B. C. D.
4、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
5、在2,1,0,-1这四个数中,比0小的数是( )
A.2 B.0 C.1 D.-1
6、如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第个图案中有2023个白色纸片,则的值为( )
A.672 B.673 C.674 D.675
7、到三角形三个顶点距离相等的点是( )
A.三边垂直平分线的交点 B.三条高所在直线的交点
C.三条角平分线的交点 D.三条中线的交点
8、多项式去括号,得( )
A. B. C. D.
9、若,则的值是( )
A. B.0 C.1 D.2022
10、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第6个图中黑点的个数是( )
A.47 B.62 C.79 D.98
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.
2、在菱形ABCD中,AB=6,E为AB的中点,连结AC,DE交于点F,连结BF.记∠ABC=α(0°<α<180°).
(1)当α=60°时,则AF的长是 _____;
(2)当α在变化过程中,BF的取值范围是 _____.
3、已知是方程的解,则a的值是______.
4、的根为____________.
5、在圆内接四边形ABCD中,,则的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、计算
(1);
(2).
2、解方程(组)
(1);
(2).
3、如图,在⊙O中,弦AC与弦BD交于点P,AC=BD.
(1)求证AP=BP;
(2)连接AB,若AB=8,BP=5,DP=3,求⊙O的半径.
4、A市出租车收费标准如下:
行程(千米) | 3千米以内 | 满3千米但不超过8千米的部分 | 8千米以上的部分 |
收费标准(元) | 10元 | 2.4元/千米 | 3元/千米 |
(1)若甲、乙两地相距6千米,乘出租车从甲地到乙地需要付款多少元?
(2)某人从火车站乘出租车到旅馆,下车时计费表显示19.6元,请你帮忙算一算从火车站到旅馆的距离有多远?
(3)小明乘飞机来到A市,小刚从旅馆乘出租车到机场去接小明,到达机场时计费表显示73元,接完小明,立即沿原路返回旅馆(接人时间忽略不计),请帮小刚算一下乘原车返回和换乘另外的出租车,哪种更便宜?
5、用适当的方法解下列方程:
(1);
(2).
-参考答案-
一、单选题
1、B
【分析】
根据二次根式的性质及运算逐项进行判断即可.
【详解】
A、,故运算错误;
B、,故运算正确;
C、,故运算错误;
D、,故运算错误.
故选:B
【点睛】
本题考查了二次根式的性质、二次根式的运算,掌握二次根式的性质及运算法则是关键.
2、B
【分析】
根据样本的百分比为,用1000乘以3%即可求得答案.
【详解】
解:∵随机抽取100件进行检测,检测出次品3件,
∴估计1000件产品中次品件数是
故选B
【点睛】
本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.
3、D
【分析】
先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可.
【详解】
A. ,故A选项错误;
B. ,不是同类项,不能合并,故错误;
C. ,故C选项错误;
D. ,故D选项正确.
故选:D.
【点睛】
本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项.
4、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
5、D
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
6、C
【分析】
根据题目中的图形,可以发现白色纸片的变化规律,然后根据第n个图案中白色纸片2023个,即可解题.
【详解】
解:由图可知,
第1个图案中白色纸片的个数为:1+1×3=4,
第2个图案中白色纸片的个数为:1+2×3=7,
第3个图案中白色纸片的个数为:1+3×3=10,
…
第n个图案中白色纸片的个数为:1+3n,
由题意得,1+3n =2023
解得n=674
故选:C.
【点睛】
本题考查图形的变化,发现题目中白色纸片的变化规律、利用数形结合思想解题是关键.
7、A
【分析】
根据线段垂直平分线上的点到两端点的距离相等解答.
【详解】
解:∵线段垂直平分线上的点到两端点的距离相等,
∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
故选:A.
【点睛】
本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
8、D
【分析】
利用去括号法则变形即可得到结果.
【详解】
解:−2(x−2)=-2x+4,
故选:D.
【点睛】
本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.
9、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
10、A
【分析】
根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,即可求解.
【详解】
解:根据题意得:第1个图中黑点的个数是 ,
第2个图中黑点的个数是 ,
第3个图中黑点的个数是,
第4个图中黑点的个数是 ,
……,
由此发现,第 个图中黑点的个数是 ,
∴第6个图中黑点的个数是 .
故选:A
【点睛】
本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.
二、填空题
1、
【分析】
如图,取的中点,连接,,,证明,进而证明在上运动, 且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.
【详解】
解:如图,取的中点,连接,,,
将线段MN绕点M顺时针旋转60°得到线段MQ,
,
是等边三角形,
,
是的中点,是的中点
是等边三角形
,
即
在和中,
又
是的中点
点在上
是的中点,是等边三角,
又
垂直平分
即的最小值为
四边形是正方形,且
的最小值为
故答案为:
【点睛】
本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.
2、2
【分析】
(1)证明是等边三角形,,进而即可求得;
(2)过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,证明在半圆上, 进而即可求得范围.
【详解】
(1)如图,
四边形是菱形
,
是等边三角形
是的中点
即
故答案为:2
(2)如图,过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,
四边形是菱形
,
在以为圆心长度为半径的圆上,
又∠ABC=α(0°<α<180°)
在半圆上,
最小值为
最大值为
故答案为:
【点睛】
本题考查了相似三角形的性质与判定,点与圆的位置关系求最值问题,掌握相似三角形的性质与判定是解题的关键.
3、4
【分析】
把代入方程得到关于的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.
【详解】
解:把代入方程得:
,
去括号得:,
系数化为1得:,
故答案为:4.
【点睛】
本题考查了一元一次方程的解,解题的关键是正确掌握解一元一次方程的方法.
4、,
【分析】
移项后再因式分解求得两个可能的根.
【详解】
解:,
,
x=0或x-1=0,
解得,,
故答案为:,.
【点睛】
本题考查一元二次方程解法中的因式分解法,掌握因式分解是本题关键.
5、110°
【分析】
根据圆内接四边形对角互补,得∠D+∠B=180°,结合已知求解即可.
【详解】
∵圆内接四边形对角互补,
∴∠D+∠B=180°,
∵
∴∠D=110°,
故答案为:110°.
【点睛】
本题考查了圆内接四边形互补的性质,熟练掌握并运用性质是解题的关键.
三、解答题
1、
(1)7
(2)
【分析】
(1)先算乘除和绝对值,再算加减法;
(2)先算乘方,再算乘除,最后算加减.
【小题1】
解:
=
=;
【小题2】
=
=
=
【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.
2、
(1)
(2)
【分析】
(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;
(2)把原方程组整理后,再利用加减消元法解答即可.
【小题1】
解:,
去分母得:,
去括号得:,
移项合并得:
解得:;
【小题2】
方程组整理得:,
①×5-②得:,
解得:,代入①中,
解得:,
所以原方程组的解为:.
【点睛】
此题考查了解一元一次方程以及解二元一次方程组,掌握消元的思想和消元的方法是解题的关键,消元的方法有:代入消元法与加减消元法.
3、(1)证明见解析;(2).
【分析】
(1)连接,先证出,再根据圆周角定理可得,然后根据等腰三角形的判定即可得证;
(2)连接,并延长交于点,连接,过作于点,先根据线段垂直平分线的判定与性质可得,再根据线段的和差、勾股定理可得,然后根据直角三角形全等的判定定理证出,根据全等三角形的性质可得,最后在中,利用勾股定理可得的长,从而可得的长,在中,利用勾股定理即可得.
【详解】
证明:(1)如图,连接,
,
,
,即,
,
;
(2)连接,并延长交于点,连接,过作于点,
,
,
是的垂直平分线,
,
,
,
,
在和中,,
,
,
设,则,
在中,,即,解得,
在中,,
即的半径为.
【点睛】
本题考查了圆周角定理、直角三角形全等的判定定理与性质、勾股定理、垂径定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.
4、
(1)17.2元
(2)7千米
(3)换乘另外出租车更便宜
【分析】
(1)根据图表和甲、乙两地相距6千米,列出算式,再进行计算即可;
(2)根据(1)得出的费用,得出火车站到旅馆的距离超过3千米,但不超过8千米,再根据图表列出方程,求出x的值即可;
(3)根据(1)得出的费用,得出出租车行驶的路程超过8千米,设出租车行驶的路程为x千米,根据图表中的数量,列出方程,求出x的值,从而得出乘原车返回需要的花费,再与换乘另一辆出租车需要的花费进行比较,即可得出答案.
(1)
10+2.4×(6-3)=17.2(元),
答:乘出租车从甲地到乙地需要付款17.2元;
(2)
设火车站到旅馆的距离为x千米.
10+2.4×5=22,
∵10<19.6<22,∴3≤x≤8,
10+2.4(x-3)=19.2,
∴x=7,符合题意.
答:从火车站到旅馆的距离有7千米;
(3)
)设旅馆到机场的距离为x千米,
∵73>22,
∴x>8.
10+2.4(8-3)+3(x-8)=73,
∴x=25.
所以乘原车返回的费用为:10+2.4×(8-3)+3×(25×2-8)=148(元);
换乘另外车辆的费用为:73×2=146(元)所以换乘另外出租车更便宜.
【点睛】
此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
5、
(1),
(2),
【分析】
(1)用配方法解即可;
(2)用因式分解法即可.
(1)
方程配方得:
开平方得:
解得:,
(2)
原方程可化为:
即
∴或
解得:,
【点睛】
本题考查了解一元二次方程的配方法和因式分解法,根据方程的特点采用适当的方法可使解方程简便.
【真题汇编】湖南省新化县中考数学模拟真题 (B)卷(精选): 这是一份【真题汇编】湖南省新化县中考数学模拟真题 (B)卷(精选),共27页。试卷主要包含了和按如图所示的位置摆放,顶点B,下列函数中,随的增大而减小的是,一元二次方程的根为等内容,欢迎下载使用。
【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了有依次排列的3个数,下列计算正确的是等内容,欢迎下载使用。
【真题汇编】中考数学模拟专项测评 A卷(精选): 这是一份【真题汇编】中考数学模拟专项测评 A卷(精选),共20页。试卷主要包含了下列式中,与是同类二次根式的是等内容,欢迎下载使用。