【真题汇编】2022年河南省郑州市中考数学备考模拟练习 (B)卷(精选)
展开2022年河南省郑州市中考数学备考模拟练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在2,1,0,-1这四个数中,比0小的数是( )
A.2 B.0 C.1 D.-1
2、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )
A. B.2 C. D.2
3、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( )
A.25° B.27° C.30° D.45°
5、-6的倒数是( )
A.-6 B.6 C.±6 D.
6、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A. B. C. D.
7、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )
A.增加10% B.增加4% C.减少4% D.大小不变
8、下列对一元二次方程x2-2x-4=0根的情况的判断,正确的是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.无法判断
9、若二次函数的图象经过点,则a的值为( )
A.-2 B.2 C.-1 D.1
10、下列说法正确的是( )
A.无限小数都是无理数
B.无理数都是无限小数
C.有理数只是有限小数
D.实数可以分为正实数和负实数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下列数轴上点表示的数是__________,点表示的数是__________.
2、将△ABC沿着DE翻折,使点A落到点A'处,A'D、A'E分别与BC交于M、N两点,且DE∥BC.已知∠A'NM=20°,则∠NEC=_____度.
3、在,,,,中,负数共有______个.
4、已知某数的相反数是﹣2,那么该数的倒数是 __________________.
5、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
三、解答题(5小题,每小题10分,共计50分)
1、计算:.
2、永辉超市计划购进甲、乙两种体育器材,若购进甲器材3件,乙器材6件,需要480元,购进甲器材2件,乙器材3件,需要280元,销售每件甲器材的利润率为37.5%,销售每件乙器材的利润率为30%.
(1)甲、乙两种体育器材进价分别为多少元/件?(列方程或方程组解答)
(2)该超市决定购进甲、乙体育器材100件,并且考虑市场需求和资金周转,用于购进这些体育器材的资金不少于6300元,同时又不能超过6430元,则该超市有哪几种进货方案?那种方案获利最大?最大利润是多少元?
3、某口罩生产厂家今年9月份生产口罩的数量为200万个,11月份生产口罩的数量达到242万个,且从9月份到11月份,每月的平均增长率都相同.
(1)求每月生产口罩的平均增长率;
(2)按照这个平均增长率,预计12月份这口罩生产厂家生产口罩的数量达到多少万个?
4、解方程(组)
(1);
(2).
5、如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.
(1)在△ABC中,∠A=30.
①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;
②如图2,若∠B =90°,BC=1,则△ABC的“形似线段”的长是 .
(2)如图3,在DEF中,,,,若EG是DEF的“形似线段”,求EG的长.
-参考答案-
一、单选题
1、D
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
2、A
【分析】
依据矩形的性质即可得到的面积为2,再根据,即可得到的值.
【详解】
解:,,
矩形的面积为8,,
,
对角线,交于点,
的面积为2,
,,
,即,
,
,
,
故选:A.
【点睛】
本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.
3、D
【分析】
由题意直接根据各象限内点坐标特征进行分析即可得出答案.
【详解】
∵点A(x,5)在第二象限,
∴x<0,
∴﹣x>0,
∴点B(﹣x,﹣5)在四象限.
故选:D.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4、B
【分析】
根据BE⊥AC,AD=CD,得到AB=BC,∠ABC,证明△ABD≌△CED,求出∠E=∠ABE=27°.
【详解】
解:∵BE⊥AC,AD=CD,
∴BE是AC的垂直平分线,
∴AB=BC,
∴∠ABC=27°,
∵AD=CD,BD=ED,∠ADB=∠CDE,
∴△ABD≌△CED,
∴∠E=∠ABE=27°,
故选:B.
【点睛】
此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.
5、D
【分析】
根据倒数的定义,即可求解.
【详解】
解:∵-6的倒数是-.
故选:D.
【点睛】
本题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.
6、B
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、B
【分析】
设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.
【详解】
设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.
故选:B
【点睛】
本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.
8、B
【分析】
根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.
【详解】
解:∵Δ=(-2)2-4×1×(-4)= 20>0,
∴方程x2-2x-4=0有两个不相等的实数根.
故选:B.
【点睛】
本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.
9、C
【分析】
把(-2,-4)代入函数y=ax2中,即可求a.
【详解】
解:把(-2,-4)代入函数y=ax2,得
4a=-4,
解得a=-1.
故选:C.
【点睛】
本题考查了点与函数的关系,解题的关键是代入求值.
10、B
【分析】
根据定义进行判断即可.
【详解】
解:A中无限小数都不一定是无理数,其中无限循环小数为有理数,故本选项错误.
B中根据无理数的定义,无理数都是无限小数,故本选项正确.
C中有理数不只是有限小数,例如无限循环小数,故本选项错误;
D中实数可以分为正实数和负实数和0,故本选项错误;
故选:B.
【点睛】
本题考查了有理数,无理数,实数的定义.解题的关键在于正确区分各名词的含义.
二、填空题
1、 ##
【分析】
观察数轴上的数值,计算求解即可得到结果.
【详解】
解:由题意知A、B表示的数分别为:
故答案为:①;②.
【点睛】
本题考查了数轴上的点表示有理数.解题的关键在于正确的识别点的位置.
2、140
【分析】
根据对顶角相等,可得∠CNE=20°,再由DE∥BC,可得∠DEN=∠CNE=20°,然后根据折叠的性质可得∠AED=∠DEN=20°,即可求解.
【详解】
解:∵∠A′NM=20°,∠CNE=∠A′NM,
∴∠CNE=20°,
∵DE∥BC,
∴∠DEN=∠CNE=20°,
由翻折性质得:∠AED=∠DEN=20°,
∴∠AEN=40°,
∴∠NEC=180°﹣∠AEN=180°﹣40°=140°.
故答案为:140
【点睛】
本题主要考查了折叠的性质,平行线的性质,熟练掌握图形折叠前后对应角相等,两直线平行,内错角相等是解题的关键.
3、3
【分析】
将各数化简,即可求解.
【详解】
解:∵,,,,,
∴负数有,,,共3个.
故答案为:3
【点睛】
本题主要考查了乘方的运算,绝对值的性质,有理数的分类,熟练掌握乘方的运算,绝对值的性质,有理数的分类是解题的关键.
4、
【分析】
根据相反数与倒数的概念可得答案.
【详解】
解:∵某数的相反数是﹣2,
∴这个数为2,
∴该数的倒数是.
故答案为:.
【点睛】
本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键.
5、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
三、解答题
1、
【分析】
根据二次根式的乘法,以及二次根式的性质,分母有理化进行计算即可.
【详解】
解:
【点睛】
本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.
2、
(1)甲、乙两种体育器材进价分别为80元/件,40元/件
(2)见解析
【分析】
(1)设甲器材的进价为x元/件,乙器材的进价为y元/件,得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进甲器材z件,根据题意列出不等式组,求出整数解,得到三种方案,分别计算三种方案的利润,比较即可.
(1)
解:设甲器材的进价为x元/件,乙器材的进价为y元/件,
由题意可得:,
解得:,
∴甲、乙两种体育器材进价分别为80元/件,40元/件;
(2)
设购进甲器材z件,
由题意可得:,
解得:,
∴z的取值为58,59,60,
方案一:当z=58时,即甲器材58件,乙器材42件,
利润为:元;
方案二:当z=59时,即甲器材59件,乙器材41件,
利润为:元;
方案三:当z=60时,即甲器材60件,乙器材40件,
利润为:元;
∴方案三的利润最大,最大利润为2280元.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组,由两种商品利润间的关系,找出获利最大的进货方案.
3、
(1)10%
(2)266.2万个
【分析】
(1)设每月的平均增长率为x,根据9月份及11月份的生产量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据12月份的生产量=11月份的生产量×(1+增长率),即可求出结论.
(1)
设每月生产口罩的平均增长率为x,根据题意得,
解得:,(不合题意,舍去)
答:每月生产口罩的平均增长率为10%.
(2)
(万个)
答:预计12月份这生产厂家生产口罩的数量达到266.2万个.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
4、
(1)
(2)
【分析】
(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;
(2)把原方程组整理后,再利用加减消元法解答即可.
【小题1】
解:,
去分母得:,
去括号得:,
移项合并得:
解得:;
【小题2】
方程组整理得:,
①×5-②得:,
解得:,代入①中,
解得:,
所以原方程组的解为:.
【点睛】
此题考查了解一元一次方程以及解二元一次方程组,掌握消元的思想和消元的方法是解题的关键,消元的方法有:代入消元法与加减消元法.
5、
(1)①见解析;②或
(2)3
【分析】
(1)①使即可,②利用三角形相似求解,分论讨论,当时,当时,结合勾股定理求解;
(2)进行分类讨论,若,若,结合,,进行求解.
(1)
①如图所示,
②分论讨论如下:
当时,如下图:
,
,
,
,
当时,如下图:
设,则,
,
解得:,
,
则△ABC的“形似线段”的长是或,
故答案为:或.
(2)
解:①若,
则.
,,,
.
②若,
则.
,,,
.
综上,.
【点睛】
本题考查了三角形相似的判定及性质,勾股定理,解题的关键是掌握三角形相似的判定及性质,及利用分论讨论的思想进行求解.
【真题汇编】湖南省娄底市中考数学备考真题模拟测评 卷(Ⅰ)(精选): 这是一份【真题汇编】湖南省娄底市中考数学备考真题模拟测评 卷(Ⅰ)(精选),共31页。试卷主要包含了下列函数中,随的增大而减小的是,如图,下列条件中不能判定的是,一元二次方程的根为等内容,欢迎下载使用。
【历年真题】2022年唐山滦州市中考数学备考模拟练习 (B)卷(精选): 这是一份【历年真题】2022年唐山滦州市中考数学备考模拟练习 (B)卷(精选),共17页。试卷主要包含了若分式的值为0,则x的值是,在解方程时,去分母正确的是,若,则的值为等内容,欢迎下载使用。
【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(精选): 这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(精选),共18页。试卷主要包含了已知ax2+24x+b=,观察下列图形,下列计算正确的是等内容,欢迎下载使用。