【真题汇编】2022年辽宁省沈阳市中考数学备考模拟练习 (B)卷(精选)
展开2022年辽宁省沈阳市中考数学备考模拟练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )
A. B. C. D.
2、下列二次根式中,不能与合并的是( )
A. B. C. D.
3、将一长方形纸条按如图所示折叠,,则( )
A.55° B.70° C.110° D.60°
4、如图,中,是的中位线,连接,相交于点,若,则为( )
A.3 B.4 C.9 D.12
5、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
6、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )
A. B.
C. D.
7、如图,点 是 的角平分线 的中点, 点 分别在 边上,线段 过点 , 且 ,下列结论中, 错误的是( )
A. B. C. D.
8、方程的解是( ).
A. B. C., D.,
9、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
10、在下列运算中,正确的是( )
A.a3•a2=a6 B.(ab2)3=a6b6
C.(a3)4=a7 D.a4÷a3=a
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在边长1正网格中,A、B、C都在格点上,AB与CD相交于点D,则sin ∠ADC=_____.
2、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________.
3、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在中,,点A在边BP上,点D在边CP上,如果,,,四边形ABCD为“对等四边形”,那么CD的长为_____________.
4、如图,在中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,,则的度数为________.
5、如图,点在直线上,射线平分.若,则等于___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,一次函数的图象交反比例函数的图象于,两点.
(1)求反比例函数与一次函数解析式.
(2)连接,求的面积.
(3)根据图象直接回答:当为何值时,一次函数的值大于反比例函数的值?
2、如图,在内部作射线和的平分线.
(1)请补全图形;
(2)若,,求的度数;
(3)若是的角平分线,,求的度数.
3、以下表格是某区一户人家2021年11月份、12月份两次缴纳家庭使用自来水水费的回执,已知污水费、水资源费等都和用水量有关,根据表中提供的信息回答下列问题:
表1:
上月指数 | 387 | 本月指数 | 403 |
加减水量 | 0吨 | 水量 | l6吨 |
污水费 | 16.8元 | 垃圾费 | 8.00元 |
水资源费 | 3.20元 |
|
|
水价 | 1.45 | 水费23.20元 |
|
违约金 | 0.00元 |
|
|
合计 | 51.20元 | 缴费状态 | 已缴 |
表2:
上月指数 | 403 | 本月指数 | 426 |
加减水量 | 0吨 | 水量 | a吨 |
污水费 | b元 | 垃圾费 | 8.00元 |
水资源费 | 4.60元 |
|
|
水价 | 1.45 | 水费33.35元 |
|
违约金 | 0.00元 |
|
|
合计 | c元 | 缴费状态 | 已缴 |
(1)根据表1可知,污水费每吨 元,水资源费每吨 元;
(2)请写出表2中a= ,b= ,c= ;
(3)若该用户某个月份缴纳该项费用回执中合计是89元,则该用户这个月共消耗自来水多少吨?
4、画出下面由11个小正方体搭成的几何体从不同角度看得到的图形.
(1)请画出从正面看、从左面看、从上面看的平面图形.
(2)小立方体的棱长为3cm,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.
(3)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,可以有______种添加方法,画出添加正方体后,从上面看这个组合体时看到的一种图形.
5、计算:.
-参考答案-
一、单选题
1、A
【分析】
看哪个几何体的三视图中有长方形,圆,及三角形即可.
【详解】
解:、三视图分别为正方形,三角形,圆,故选项符合题意;
、三视图分别为三角形,三角形,圆及圆心,故选项不符合题意;
、三视图分别为正方形,正方形,正方形,故选项不符合题意;
、三视图分别为三角形,三角形,矩形及对角线,故选项不符合题意;
故选:A.
【点睛】
本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.
2、B
【分析】
先把每个选项的二次根式化简,再逐一判断与的被开方数是否相同,被开方数相同则能合并,不相同就不能合并,从而可得答案.
【详解】
解:能与合并, 故A不符合题意;
不能与合并,故B不符合题意;
能与合并, 故C不符合题意;
能与合并, 故D不符合题意;
故选B
【点睛】
本题考查的是同类二次根式的概念,掌握“同类二次根式的概念进而判断两个二次根式能否合并”是解本题的关键.
3、B
【分析】
从折叠图形的性质入手,结合平行线的性质求解.
【详解】
解:由折叠图形的性质结合平行线同位角相等可知,,
,
.
故选:B.
【点睛】
本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.
4、A
【分析】
根据DE∥BC,得△DEF∽△CBF,得到,利用BE是中线,得到+=,计算即可.
【详解】
∵是的中位线,
∴DE∥BC,BC=2DE,
∴△DEF∽△CBF,
∴,
∴,
∵,
∴,
∵BE是中线,
∴=,
∵是的中位线,
∴DE∥BC,
∴=,
∴=,
∴++=+,
∴+=,
∴=3,
故选A.
【点睛】
本题考查了三角形中位线定理,中线的性质,相似三角形的性质,熟练掌握中位线定理,灵活选择相似三角形的性质是解题的关键.
5、A
【分析】
由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
【详解】
解:∵二次函数y=x2﹣2x+m,
∴抛物线开口向上,对称轴为x=1,
∵x1<x2,
∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
∴y1>y2,
故选:A.
【点睛】
本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
6、A
【分析】
由平面图形的折叠及图形的对称性展开图解题.
【详解】
由第一次对折后中间有一个矩形,排除B、C;
由第二次折叠矩形正在折痕上,排除D;
故选:A.
【点睛】
本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答.
7、D
【分析】
根据AG平分∠BAC,可得∠BAG=∠CAG,再由点 是 的中点,可得 ,然后根据,可得到△DAE∽△CAB,进而得到△EAF∽△BAG,△ADF∽△ACG,即可求解.
【详解】
解:∵AG平分∠BAC,
∴∠BAG=∠CAG,
∵点 是 的中点,
∴ ,
∵,∠DAE=∠BAC,
∴△DAE∽△CAB,
∴ ,
∴∠AED=∠B,
∴△EAF∽△BAG,
∴ ,故C正确,不符合题意;
∵,∠BAG=∠CAG,
∴△ADF∽△ACG,
∴ ,故A正确,不符合题意;D错误,符合题意;
∴,故B正确,不符合题意;
故选:D
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
8、C
【分析】
先提取公因式x,再因式分解可得x(x-1)=0,据此解之可得.
【详解】
解:,
x(x-1)=0,
则x=0或x-1=0,
解得x1=0,x2=1,
故选:C.
【点睛】
本题考查了一元二次方程的解法,掌握用因式分解法解一元二次方程是关键.
9、C
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
10、D
【分析】
由;;,判断各选项的正误即可.
【详解】
解:A中,错误,故本选项不合题意;
B中,错误,故本选项不合题意;
C中,错误,故本选项不合题意;
D中,正确,故本选项符合题意.
故选:D.
【点睛】
本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.
二、填空题
1、##
【分析】
将转化成其他相等的角,在直角三角形中,利用正弦函数值的定义求解即可.
【详解】
解:延长CD交正方形的另一个顶点为,连接BE,如下图所示:
由题意可知:,,
根据正方形小格的边长及勾股定理可得:,,
在中,,
,
故答案为:.
【点睛】
本题主要是考查了勾股定理和求解正弦值,熟练地找到所求角在的直角三角形,利用正弦函数值的定义进行求解,这是解决该题的关键.
2、y=﹣x2﹣4(答案不唯一)
【分析】
根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,﹣4)得出即可.
【详解】
解:∵抛物线开口向下且过点(0,﹣4),
∴可以设顶点坐标为(0,﹣4),
故解析式为:y=﹣x2﹣4(答案不唯一).
故答案为:y=﹣x2﹣4(答案不唯一).
【点睛】
本题考查了二次函数图象的性质,是开放型题目,答案不唯一.
3、13或12-或12+
【分析】
根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.
【详解】
解:如图,点D的位置如图所示:
①若CD=AB,此时点D在D1的位置,CD1=AB=13;
②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,
过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,
设BE=x,
∵,
∴AE=x,
在Rt△ABE中,AE2+BE2=AB2,
即x2+(x)2=132,
解得:x1=5,x2=-5(舍去),
∴BE=5,AE=12,
∴CE=BC-BE=6,
由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,FD2=,
∴CD2=CF-FD2=12-,
CD3=CF+FD2=12+,
综上所述,CD的长度为13、12-或12+.
故答案为:13、12-或12+.
【点睛】
本题主要考查了新定义,锐角三角函数,勾股定理等知识,解题的关键是理解并能运用“等对角四边形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用.
4、
【分析】
根据线段的垂直平分线的性质得到,,得到和,根据三角形内角和定理计算得到答案.
【详解】
解:是线段的垂直平分线,
,
,
同理,
,
,
,
故答案是:.
【点睛】
本题考查的是线段的垂直平分线的性质和三角形内角和定理,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.
5、
【分析】
首先根据角平分线定义可得∠BOD=2∠BOC,再根据邻补角的性质可得∠AOD的度数.
【详解】
∵射线OC平分∠DOB.
∴∠BOD=2∠BOC,
∵,
∴,
∴∠AOD=180°,
故答案为:.
【点睛】
此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.需要注意角度度分秒的计算.
三、解答题
1、
(1),;
(2)15;
(3)0<x<2或x>8.
【分析】
(1)先把点A的坐标代入,求出m的值得到反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;
(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积-三角形BOC的面积即可求解;
(3)观察函数图象即可求得.
(1)
解:把A(2,-4)的坐标代入得:m=-8,
∴反比例函数的解析式是;
把B(a,-1)的坐标代入得:-1=,
解得:a=8,
∴B点坐标为(8,-1),
把A(2,-4)、B(8,-1)的坐标代入y=kx+b,得:,
解得: ,
∴一次函数解析式为;
(2)
解:设直线AB交x轴于C.
∵,
∴当y=0时,x=10,
∴OC=10,
∴△AOB的面积=△AOC的面积-三角形BOC的面积
=;
(3)
解:由图象知,当0<x<2或x>8时,一次函数的值大于反比例函数的值.
【点睛】
本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B的坐标是解题的关键.
2、
(1)图见解析
(2)
(3)
【分析】
(1)先根据射线的画法作射线,再利用量角器画的平分线即可得;
(2)先根据角的和差可得,再根据角平分线的定义即可得;
(3)先根据角平分线的定义可得,,再根据可得的度数,由此即可得.
(1)
解:补全图形如下:
(2)
解:,,
,
是的平分线,
;
(3)
解:是的角平分线,
,
是的平分线,
,
,
,
解得,
.
【点睛】
本题考查了画射线和角平分线、与角平分线有关的计算,熟练掌握角平分线的运算是解题关键.
3、
(1)
(2),,
(3)该用户这个月共消耗自来水30吨.
【分析】
(1)由污水费除以用水的数量可得污水费的单价,由水资源费除以用水的数量可得水资源费的单价;
(2)由本月指数减去上月指数可得用水量,由用水数量乘以污水费的单价可得污水费用,再把污水费,水资源费,垃圾费,水费相加即可得到的值;
(3)设该用户这个月共消耗自来水吨,再由污水费,水资源费,垃圾费,水费之和为89列方程解方程即可.
(1)
解:由表1可得:污水费每吨(元),水资源费每吨(元),
故答案为:
(2)
解:用水量(吨),
污水费(元),
总费用(元).
故答案为:
(3)
解:设该用户这个月共消耗自来水吨,则
整理得:
解得:
答:设该用户这个月共消耗自来水吨.
【点睛】
本题考查的是有理数的加减乘除运算的实际应用,一元一次方程的应用,理解题意列出运算式,确定相等关系列方程是解本题的关键.
4、
(1)见解析;
(2)315cm2 ;
(3)2
【分析】
(1)根据三视图的画法,画出这个简单组合体的三视图即可;
(2)分别求出最上层,中间层和最下面一层需要涂色的面,即可求解;
(3)根据再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,进行求解即可.
(1)
解:如图所示,即为所求:
(2)
解:由题意可知,几何体的最上层一共有5个面需要涂色,中间一层一共有12个面需要涂色,最小面一层一共有18个面需要涂色,
∴一共用12+18+5=35个面需要涂色,
∴涂上颜色部分的总面积
(3)
解:如图所示,一共有2种添加方法.
【点睛】
本题主要考查了画简单几何体的三视图,简单组合体的表面积等等,解题的关键在于能够熟练掌握相关知识.
5、
【分析】
根据完全平方公式及平方差公式,然后再合并同类项即可.
【详解】
解:原式
.
【点睛】
本题考查了完全平方公式及平方差公式,属于基础题,计算过程中细心即可.
【历年真题】2022年唐山滦州市中考数学备考模拟练习 (B)卷(精选): 这是一份【历年真题】2022年唐山滦州市中考数学备考模拟练习 (B)卷(精选),共17页。试卷主要包含了若分式的值为0,则x的值是,在解方程时,去分母正确的是,若,则的值为等内容,欢迎下载使用。
【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(精选): 这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(精选),共18页。试卷主要包含了已知ax2+24x+b=,观察下列图形,下列计算正确的是等内容,欢迎下载使用。
【真题汇编】2022年河南省郑州市中考数学备考模拟练习 (B)卷(精选): 这是一份【真题汇编】2022年河南省郑州市中考数学备考模拟练习 (B)卷(精选),共20页。试卷主要包含了-6的倒数是等内容,欢迎下载使用。