【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(精选)
展开中考数学模拟真题练习 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在中,,,则( )
A. B. C. D.
2、已知,则代数式的值是( )
A.﹣3 B.3 C.9 D.18
3、在数2,-2,,中,最小的数为( )
A.-2 B. C. D.2
4、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A. B. C. D.
5、已知ax2+24x+b=(mx﹣3)2,则a、b、m的值是( )
A.a=64,b=9,m=﹣8 B.a=16,b=9,m=﹣4
C.a=﹣16,b=﹣9,m=﹣8 D.a=16,b=9,m=4
6、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y1 | … | 1 | 2 | 3 | 4 | 5 | … |
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y2 | … | 5 | 2 | ﹣1 | ﹣4 | ﹣7 | … |
则关于x的不等式kx+b>mx+n的解集是( )
A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
7、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21 B.25 C.28 D.29
8、由抛物线平移得到抛物线则下列平移方式可行的是( )
A.向左平移4个单位长度 B.向右平移4个单位长度
C.向下平移4个单位长度 D.向上平移4个单位长度
9、下列计算正确的是( )
A. B.
C. D.
10、已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间)
B.点B与点D重合
C.点B在线段CD的延长线上
D.点B在线段DC的延长线上
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、按下面的程序计算,若开始输入的值为正整数,
规定:程序运行到“判断结果是否大于10”为一次运算,当时,输出结果____.若经过2次运算就停止,则可以取的所有值是____.
2、甲乙两人到沙漠中探险,他们每天向沙漠深处走30千米,已知一个人最多可以带36天的食物和水,若不准将部分食物存放于途中,其中一个人最远可以深入沙漠______千米.(要求最后两个人都要返回出发点)
3、在平面直角坐标系中,点A坐标为,点B在x轴上,若是直角三角形,则OB的长为______.
4、如图,AB∥CD∥EF,如果AC=2,CE=3,BD=1.5,那么BF的长是_____.
5、如图,四边形中,,,,在、上分别找一点M、N,当周长最小时,的度数是______________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在离铁塔20m的A处,用测倾仪测得塔顶的仰角为53°,测倾仪高AD为1.52m.求铁塔高BC(参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).
2、已知、互为相反数,、互为倒数,的绝对值为2,且,求的值.
3、如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).
(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;并写出点B′的坐标.
(2)在图中x轴上作出一点P,使PA+PB的值最小.
4、(1)解方程:
(2)我国古代数学专著《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”注释:宛田是指扇形形状的田,下周是指弧长,径是指扇形所在圆的直径.求这口宛田的面积.
5、解方程:.
-参考答案-
一、单选题
1、B
【分析】
作出图形,设BC=3k,AB=5k,利用勾股定理列式求出AC,再根据锐角的余切即可得解.
【详解】
解:如图,
,
∴
∴设BC=3k,AB=5k,
由勾股定理得,
∴.
故选:B.
【点睛】
本题考查了求三角函数值,利用“设k法”表示出三角形的三边求解更加简便.
2、C
【分析】
由已知得到,再将变形,整体代入计算可得.
【详解】
解:∵,
∴,
∴
=
=
=9
故选:C.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.
3、A
【分析】
根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
【详解】
解:∵,,
∴-2<<<2,
故选A.
【点睛】
本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键.
4、B
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
5、B
【分析】
将根据完全平方公式展开,进而根据代数式相等即可求解
【详解】
解:∵ ,ax2+24x+b=(mx﹣3)2,
∴
即
故选B
【点睛】
本题考查了完全平方公式,掌握完全平方公式是解题的关键.
6、D
【分析】
根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
【详解】
解:根据表可得y1=kx+b中y随x的增大而增大;
y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
则当x>﹣1时,kx+b>mx+n.
故选:D.
【点睛】
本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
7、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
8、A
【分析】
抛物线的平移规律:上加下减,左加右减,根据抛物线的平移规律逐一分析各选项即可得到答案.
【详解】
解:抛物线向左平移4个单位长度可得: 故A符合题意;
抛物线向右平移4个单位长度可得:故B不符合题意;
抛物线向下平移4个单位长度可得: 故C不符合题意;
抛物线向上平移4个单位长度可得: 故D不符合题意;
故选A
【点睛】
本题考查的是抛物线图象的平移,掌握“抛物线的平移规律”是解本题的关键.
9、D
【分析】
利用完全平方公式计算即可.
【详解】
解:A、原式=a2+2ab+b2,本选项错误;
B、原式==-a2+2ab-b2,本选项错误;
C、原式=a2−2ab+b2,本选项错误;
D、原式=a2+2ab+b2,本选项正确,
故选:D.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
10、A
【分析】
根据叠合法比较大小的方法始点重合,看终点可得点B在线段CD上,可判断A,点B与点D重合,可得线段AB=CD,可判断B,利用AB>CD,点B在线段CD的延长线上,可判断C, 点B在线段DC的延长线上,没有将AB移动到CD的位置,无法比较大小可判断D.
【详解】
解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
点B在线段CD上(C、D之间),故选项A正确,
点B与点D重合,则有AB=CD与AB<CD不符合,故选项B不正确;
点B在线段CD的延长线上,则有AB>CD,与AB<CD不符合,故选项C不正确;
点B在线段DC的延长线上,没有将AB移动到CD的位置,故选项D不正确.
故选:A.
【点睛】
本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键.
二、填空题
1、11, 2或3或4.
【分析】
根据题意将代入求解即可;根据题意列出一元一次不等式组即可求解.
【详解】
解:当时,第1次运算结果为,第2次运算结果为,
当时,输出结果,
若运算进行了2次才停止,则有,
解得:.
可以取的所有值是2或3或4,
故答案为:11,2或3或4.
【点睛】
此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组.
2、720
【分析】
因为要求最远,所以两人同去耗食物,所以只一人去,另一人中途返回,两人一起出发.12天后两人都只剩24天的食物.乙分给甲12天的食物后独自带着12天的食物返回,也就是甲一共有48天的食物.
【详解】
解:[(36+36÷3)÷2]×30
=24×30
=720(千米).
答:其中一人最远可以深入沙漠720千米.
故答案为:720.
【点睛】
此题考查了有理数的混合运算,生活中方法的最佳选择,首先要想到去多远,都得返回,所以每前进一步,都要想着返回的食物,进而找到最佳答案.
3、4或
【分析】
点B在x轴上,所以 ,分别讨论, 和两种情况,设 ,根据勾股定理求出x的值,即可得到OB的长.
【详解】
解:∵B在x轴上,
∴设 ,
∵ ,
∴ ,
①当时,B点横坐标与A点横坐标相同,
∴ ,
∴ ,
∴ ,
②当时, ,
∵点A坐标为,,
∴ ,
∴ ,
解得: ,
∴ ,
∴ ,
故答案为:4或.
【点睛】
本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.
4、
【分析】
根据平行线分线段成比例定理解答即可.
【详解】
解:∵AB∥CD∥EF,AC=2,CE=3,BD=1.5,
∴,即,
解得:BF=,
故答案为:.
【点睛】
本题主要考查了平行线分线段成比例,熟知平行线分线段成比例定理是解题的关键.
5、128°
【分析】
分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE ,则当M、N在线段EF上时△AMN的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果.
【详解】
分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,如图
由对称的性质得:AN=FN,AM=EM
∴∠F=∠NAD,∠E=∠MAB
∵AM+AN+MN=EM+FN+MN≥EF
∴当M、N在线段EF上时,△AMN的周长最小
∵∠AMN+∠ANM=∠E+∠MAB+∠F+∠NAD=2∠E+2∠F=2(∠E+∠F)=2(180°−∠BAD)=2×(180°−116°)=128°
故答案为:128°
【点睛】
本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A关于BC、DC的对称点是本题的关键.
三、解答题
1、米
【分析】
如图,过作于 可得再利用求解 从而可得答案.
【详解】
解:如图,过作于
结合题意可得:四边形是矩形,
而
所以铁塔高BC为:米
【点睛】
本题考查的是矩形的判定与性质,解直角三角形的应用,熟练的构建直角三角形,再利用锐角三角函数求解直角三角形的边长是解本题的关键.
2、5.
【分析】
利用相反数、倒数的性质,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.
【详解】
解:由已知可得,a+b=0,cd=1,x=2,
x2+(a+b)x+(-cd)x
=22+02+(-1)2
=4+0+1
=5.
【点睛】
本题考查了代数式求值,熟练掌握运算法则是解本题的关键.
3、(1)作图见解析,点B′的坐标为(-4,1);(2)见解析
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
(2)作出点A关于x轴的对称点A″,再连接A″B,与x轴的交点即为所求.
【详解】
解:(1)如图所示,△A′B′C′即为所求.
点B′的坐标为(-4,1);
(2)如图所示,点P即为所求.
【点睛】
本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.
4、(1),;(2)平方步
【分析】
(1)利用配方法,即可求解;
(2)利用扇形的面积公式,即可求解.
【详解】
解:(1),,
配方,得,
∴,
∴,;
(2)解:∵扇形的田,弧长30步,其所在圆的直径是16步,
∴这块田的面积(平方步).
【点睛】
本题主要考查了解一元二次方程,求扇形的面积,熟练掌握一元二次方程的解法,扇形的面积等于 乘以弧长再乘以扇形的半径是解题的关键.
5、.
【分析】
先计算右边算式,再把系数化为1即可得答案.
【详解】
,
.
【点睛】
本题考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.
【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了有依次排列的3个数,下列计算正确的是等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解): 这是一份【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了在平面直角坐标系xOy中,点A,下列四个实数中,无理数是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。
【真题汇编】中考数学模拟专项测评 A卷(精选): 这是一份【真题汇编】中考数学模拟专项测评 A卷(精选),共20页。试卷主要包含了下列式中,与是同类二次根式的是等内容,欢迎下载使用。