【真题汇编】2022年重庆市南岸区中考数学模拟专项测评 A卷(含答案详解)
展开2022年重庆市南岸区中考数学模拟专项测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
2、下列几何体中,俯视图为三角形的是( )
A. B.
C. D.
3、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )
A. B. C. D.
4、下列各数中,是无理数的是( )
A.0 B. C. D.3.1415926
5、若方程有实数根,则实数a的取值范围是( )
A. B.
C.且 D.且
6、有理数、、、在数轴上对应的点的位置如图所示,则下列结论错误的是( )
A. B. C. D.
7、几个同学打算合买一副球拍,每人出7元,则还少4元;每人出8元,就多出3元.他们一共有( )个人.
A.6 B.7 C.8 D.9
8、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬 B.奥 C.运 D.会
9、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )
A.的 B.祖 C.国 D.我
10、如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是( )
A.78 B.70 C.84 D.105
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.
2、二次函数y=ax2+bx+4的图象如图所示,则关于x的方程a(x+1)2+b(x+1)=﹣4的根为______.
3、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.
4、如图点O在直线上,与互为余角,则的大小为________.
5、如图,已知AD为的高,,以AB为底边作等腰,,交AC于F,连ED,EC,有以下结论:①;②;③;④;其中正确的是___.
三、解答题(5小题,每小题10分,共计50分)
1、计算:.
2、如图,点,,,在同一直线上.已知,,,请说明.
3、如图,边长为1的正方形ABCD中,对角线AC、BD相交于点O,点Q、R分别在边AD、DC上,BR交线段OC于点P,,QP交BD于点E.
(1)求证:;
(2)当∠QED等于60°时,求的值.
4、如图,在内部作射线和的平分线.
(1)请补全图形;
(2)若,,求的度数;
(3)若是的角平分线,,求的度数.
5、如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90°,AB2=BC·BD,AB=3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,连接DF
(1)求证:AE=AC;
(2)设,,求关于的函数关系式及其定义域;
(3)当△ABC与△DEF相似时,求边BC的长.
-参考答案-
一、单选题
1、A
【详解】
解:.既是中心对称图形又是轴对称图形,故此选项符合题意;
.是轴对称图形,不是中心对称图形,故此选项不合题意;
.是轴对称图形,不是中心对称图形,故此选项不合题意;
.不是轴对称图形,是中心对称图形,故此选项不合题意.
故选:A.
【点睛】
本题考查的是中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、C
【分析】
依题意,对各个图形的三视图进行分析,即可;
【详解】
由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;
对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;
对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;
对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;
故选:C
【点睛】
本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;
3、A
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:40210000
故选:A
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
4、B
【分析】
无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.
【详解】
A.0是整数,属于有理数,故本选项不合题意;
B.是无理数,故本选项符合题意;
C.是分数,属于有理数,故本选项不合题意;
D.3.1415926是有限小数,属于有理数,故本选项不合题意;
故选:B.
【点睛】
本题考查了无理数,掌握无理数的含义是解题的关键.
5、B
【分析】
若方程为一元二次方程,则有,,求解;若,方程为一元一次方程,判断有实数根,进而求解取值范围即可.
【详解】
解:若方程为一元二次方程,则有,
解得且
若,方程为一元一次方程,有实数根
故选B.
【点睛】
本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑的情况.
6、C
【分析】
根据有理数a,b,c,d在数轴上对应的点的位置,逐个进行判断即可.
【详解】
解:由有理数a,b,c,d在数轴上对应的点的位置可得,
-4<d<-3<-1<c<0<1<b<2<3<a<4,
∴,,,
,
故选:C.
【点睛】
本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提.
7、B
【分析】
依题意,按照一元一次方程定义和实际应用,列方程计算,即可;
【详解】
由题知,设合买球拍同学的人数为;
∴ ,可得:
∴故选
【点睛】
本题主要考查一元一次方程的实际应用,关键在熟练审题和列方程计算;
8、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
9、B
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
第一列的“我”与“的”是相对面,
第二列的“我”与“国”是相对面,
“爱”与“祖”是相对面.
故选:B.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
10、A
【分析】
设“U”型框中的最下排正中间的数为x,则其它6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,表示出这7个数之和,然后分别列出方程解答即可.
【详解】
解:设“U”型框中的最下排正中间的数为x,则其他6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,
这7个数之和为:x-15+x-8+x-1+x+1+x-6+x-13=7x-42.
由题意得:
A、7x-42=78,解得x=,不能求出这7个数,符合题意;
B、7x-42=70,解得x=16,能求出这7个数,不符合题意;
C、7x-42=84,解得x=18,能求出这7个数,不符合题意;
D、7x-42=105,解得x=21,能求出这7个数,不符合题意.
故选:A.
【点睛】
本题考查一元一次方程的实际运用,掌握“U”型框中的7个数的数字的排列规律是解决问题的关键.
二、填空题
1、3 4 (3,﹣4)
【分析】
根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.
【详解】
解:∵A(x,4)关于y轴的对称点是B(-3,y),
∴x=3,y=4,
∴A点坐标为(3,4),
∴点A关于x轴的对称点的坐标是(3,-4).
故答案为:3;4;(3,-4).
【点睛】
本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.
2、x
【分析】
根据图象求出方程ax2+bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.
【详解】
解:由图可知:二次函数y=ax2+bx+4与x轴交于(-4,0)和(1,0),
∴ax2+bx+4=0的解为:x=-4或x=1,
则在关于x的方程a(x+1)2+b(x+1)=-4中,
x+1=-4或x+1=1,
解得:x=-5或x=0,
即关于x的方程a(x+1)2+b(x+1)=-4的解为x=-5或x=0,
故答案为:x=-5或x=0.
【点睛】
本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.
3、(0,-5)
【分析】
在Rt△ODC中,利用勾股定理求出OC即可解决问题.
【详解】
解:∵A(12,13),
∴OD=12,AD=13,
∵四边形ABCD是菱形,
∴CD=AD=13,
在Rt△ODC中,,
∴C(0,-5).
故答案为:(0,-5)
【点睛】
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
4、90°
【分析】
利用互余的定义,平角的定义,角的差计算即可.
【详解】
∵与互为余角,
∴∠AOC+∠BOD=90°,
∴∠COD=180°-90°=90°,
故答案为:90°.
【点睛】
本题考查了互余即两个角的和是90°,角的和差,熟练记住互余的定义,灵活运用角的和差是解题的关键.
5、①③
【分析】
只要证明,,是的中位线即可一一判断;
【详解】
解:如图延长交于,交于.设交于.
,,
,
,,
,故①正确,
,,
,
,
,
不垂直,故②错误,
,
,
,,
,
,
是等腰直角三角形,平分,
,
,
,
,
,故③正确,
,
,
,
,
,故④正确.
故答案是:①③.
【点睛】
本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
三、解答题
1、6
【分析】
根据公式、及算术平方根的概念逐个求解即可.
【详解】
解:原式.
【点睛】
本题考查了、及算术平方根的概念,属于基础题,计算过程中细心即可.
2、见详解.
【分析】
用AAS证明△ABF≌△DCE即可.
【详解】
解:∵
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS).
【点睛】
本题考查了全等三角形的判定,证明BF=CE是解决本题的关键.
3、
(1)见解析
(2)
【分析】
(1)根据正方形的性质,可得∠CAD=∠BDC=45°,∠OBP+∠OPB=90°,再由,可得∠OBP=∠OPE,即可求证;
(2)设OE=a,根据∠QED等于60°,可得∠BEP=60°,然后利用锐角三角函数,可得BD=2OB=6a, ,然后根据相似三角形的对应边成比例,即可求解.
(1)
证明:在正方形ABCD中,
∠CAD=∠BDC=45°,BD⊥AC,
∴∠BOC=90°,
∴∠OBP+∠OPB=90°,
∵,
∴∠BPQ=90°,
∴∠OPE+∠OPB=90°,
∴∠OBP=∠OPE,
∴;
(2)
解:设OE=a,
在正方形ABCD中,∠POE=90°,OA=OB=OD,
∵∠QED等于60°,
∴∠BEP=60°,
在 中,
,,
∵,∠BEP=60°,
∴∠PBE=30°,
∴, ,
∴OA=OB=BE-OE=3a,
∴BD=2OB=6a,
∴ ,
∵,
∴.
【点睛】
本题主要考查了相似三角形的判定和性质,解直角三角形,熟练掌握相似三角形的判定和性质定理,特殊角锐角三角函数值是解题的关键.
4、
(1)图见解析
(2)
(3)
【分析】
(1)先根据射线的画法作射线,再利用量角器画的平分线即可得;
(2)先根据角的和差可得,再根据角平分线的定义即可得;
(3)先根据角平分线的定义可得,,再根据可得的度数,由此即可得.
(1)
解:补全图形如下:
(2)
解:,,
,
是的平分线,
;
(3)
解:是的角平分线,
,
是的平分线,
,
,
,
解得,
.
【点睛】
本题考查了画射线和角平分线、与角平分线有关的计算,熟练掌握角平分线的运算是解题关键.
5、
(1)证明见解析
(2),
(3)或
【分析】
(1)由题意可证得,,即∠EAB=∠CAB,则可得,故AE=AC.
(2)可证得,故有,在中由勾股定理有,联立后化简可得出,BC的定义域为.
(3)由(1)(2)问可设,,,,若△ABC与△DEF相似时,则有和两种情况,再由对应边成比例列式代入化简即可求得x的值.
(1)
∵AB2=BC·BD
∴
又∵∠ACB=∠DAB=90°
∴
∴∠ADB=∠CAB
在Rt△EBA与Rt△ABD中
∠AEB=∠DAB=90°,∠ABD=∠ABD
∴
∴∠ADB=∠EAB
∴∠EAB =∠CAB
在Rt△EBA与Rt△CAB中
∠EAB =∠CAB
AB=AB
∠ACB=∠AEB=90°
∴
∴AE=AC
(2)
∵∠ACB=∠FEB=90°,∠F=∠F
∴
∴
∴
在中由勾股定理有
即
代入化简得
由(1)问知AC=AE,BE=BC=x
则
式子左右两边减去得
式子左右两边同时除以得
∵
∴
在中由勾股定理有
即
∴
移项、合并同类项得,
由图象可知BC的取值范围为.
(3)
由(1)、(2)问可得
,,,
当时
由(1)问知
即
则
化简为
约分得
移向,合并同类项得
则或(舍)
当时
由(1)问知
即
则
化简得
约分得
移项得
去括号得
移向、合并同类项得
则或(舍)
综上所述当△ABC与△DEF相似时, BC的长为或.
【点睛】
本题考查了相似三角形的判定及证明,全等三角形的判定及证明,勾股定理,需熟练掌握相似三角形和全等三角形的判定及性质,本题解题过程中计算过程较复杂繁琐,耐心细致的计算是解题的关键.
【真题汇总卷】2022年重庆市南岸区中考数学模拟真题测评 A卷(含详解): 这是一份【真题汇总卷】2022年重庆市南岸区中考数学模拟真题测评 A卷(含详解),共25页。试卷主要包含了如图,是的外接圆,,则的度数是,已知,则的值为等内容,欢迎下载使用。
【真题汇编】2022年最新中考数学模拟专项测评 A卷(含详解): 这是一份【真题汇编】2022年最新中考数学模拟专项测评 A卷(含详解),共17页。试卷主要包含了下列二次根式的运算正确的是,下列说法正确的有,已知ax2+24x+b=,若,则的值是等内容,欢迎下载使用。
【真题汇编】2022年重庆市永川区中考数学模拟真题测评 A卷(含详解): 这是一份【真题汇编】2022年重庆市永川区中考数学模拟真题测评 A卷(含详解),共21页。试卷主要包含了已知线段AB,下列说法正确的有,若,则值为,下列各对数中,相等的一对数是,若,则的值为等内容,欢迎下载使用。