【真题汇总卷】2022年河北省沧州市中考数学第三次模拟试题(含详解)
展开2022年河北省沧州市中考数学第三次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、二次函数的图象经过点,,,则,,的大小关系正确的为( )
A. B. C. D.
2、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6 B.6或7 C.5或6或7 D.6或7或8
3、已知和是同类项,那么的值是( )
A.3 B.4 C.5 D.6
4、下列说法正确的是( )
A.等腰三角形高、中线、角平分线互相重合
B.顶角相等的两个等腰三角形全等
C.底角相等的两个等腰三角形全等
D.等腰三角形的两个底角相等
5、已知一个圆锥的高为3,母线长为5,则圆锥的侧面积是( )
A.10π B.12π C.16π D.20π
6、下图中能体现∠1一定大于∠2的是( )
A. B.
C. D.
7、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
8、下列命题中,真命题是( )
A.同位角相等
B.有两条边对应相等的等腰三角形全等
C.互余的两个角都是锐角
D.相等的角是对顶角.
9、下列方程中,属于二元一次方程的是( )
A.xy﹣3=1 B.4x﹣2y=3 C.x+=4 D.x2﹣4y=1
10、下列命题中,是真命题的是( )
A.一条线段上只有一个黄金分割点
B.各角分别相等,各边成比例的两个多边形相似
C.两条直线被一组平行线所截,所得的线段成比例
D.若2x=3y,则
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,ADBC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是2,则△BOC的面积是 ___.
2、如图,是用若干个边长为1的小正方体堆积而成的几何体,该几何体的左视图的面积为__________
3、的倒数是________;绝对值等于3的数是________.
4、如图,在中,,,以为直角边作等腰直角,再以为直角边作等腰直角,…,按照此规律作图,则的长度为______,的长度为______.
5、已知点P在线段AB上,如果AP2=AB•BP,AB=4,那么AP的长是_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,D、E分别是AC、AB上的点,△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,求AE、BE的长.
2、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为[A,B]的“三倍距点”,当CB=3CA时,我们称C为[B,A]的“三倍距点”.点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b−5|=0.
(1) a=__________,b=__________;
(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C所表示的数为______;
(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t秒.当点B为M,N两点的“三倍距点”时,求t的值.
3、分解因式:
(1);
(2).
4、计算:
5、先化简,再求值:a2b-[3ab2-2(-3a2b+ab2)],其中a=1,b=-.
-参考答案-
一、单选题
1、B
【分析】
先求得对称轴为,开口朝下,进而根据点与的距离越远函数值越小进行判断即可.
【详解】
解:∵
∴对称轴为,,开口向下,
离对称轴越远,其函数值越小,
,,,
,
故选B
【点睛】
本题考查了二次函数图象的性质,掌握二次函数的性质是解题的关键.
2、C
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
3、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
4、D
【分析】
根据等腰三角形的性质和全等三角形的判定方法对选项一一分析判定即可.
【详解】
解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,该选项说法错误,不符合题意;
B、顶角相等的两个等腰三角形不一定全等,因为边不相等,该选项说法错误,不符合题意;
C、底角相等的两个等腰三角形不一定全等,因为没有边对应相等,该选项说法错误,不符合题意;
D、等腰三角形的两个底角相等,该选项说法正确,符合题意;
故选:D.
【点睛】
本题考查等腰三角形的性质与全等判定,掌握等腰三角形的性质与等腰三角形全等判定是解题关键.
5、D
【分析】
首先利用勾股定理求得底面半径的长,然后根据扇形的面积公式即可求解.
【详解】
解:圆锥的底面半径是:,则底面周长是:,
则圆锥的侧面积是:.
故选:D.
【点睛】
本题主要考查三视图的知识和圆锥侧面面积的计算,解题的关键是由三视图得到立体图形,及记住圆锥的侧面面积公式.
6、C
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
7、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
8、C
【分析】
根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.
【详解】
解:A、两直线平行,同位角相等,故本选项说法是假命题;
B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;
C、互余的两个角都是锐角,本选项说法是真命题;
D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;
故选:C.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
9、B
【分析】
二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.
【详解】
解:A、xy-3=1,是二元二次方程,故本选项不合题意;
B、4x-2y=3,属于二元一次方程,故本选项符合题意;
C、x+=4,是分式方程,故本选项不合题意;
D、x2-4y=1,是二元二次方程,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
10、B
【分析】
根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.
【详解】
解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;
B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;
C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;
D.若2x=3y,则,所以D选项不符合题意.
故选:B.
【点睛】
本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
二、填空题
1、3
【分析】
根据平行可得:与高相等,即两个三角形的面积相等,根据图中三角形之间的关系即可得.
【详解】
解:∵,
∴与高相等,
∴,
又∵,
∴,
故答案为:3.
【点睛】
题目主要考查平行线间的距离相等,三角形面积的计算等,理解题意,掌握平行线之间的距离相等是解题关键.
2、3
【分析】
由题意,先画出几何体的左视图,然后计算面积即可.
【详解】
解:根据题意,该几何体的左视图为:
∴该几何体的左视图的面积为3;
故答案为:3.
【点睛】
本题考查了简单几何体的三视图,解题的关键是正确的画出左视图.
3、
【分析】
根据倒数的定义和绝对值的性质即可得出答案.
【详解】
解:的倒数是;绝对值等于3的数为±3,
故答案为:,±3.
【点睛】
此题考查了绝对值的性质、倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
4、
【分析】
根据等腰直角三角形斜边等于直角边的倍分别求解即可.
【详解】
解:∵,
∴
同理可得,
⋯
故答案为:,.
【点睛】
本题考查了等腰直角三角形的性质,熟记等腰直角三角形斜边等于直角边的倍是解题的关键.
5、2﹣2
【分析】
先证出点P是线段AB的黄金分割点,再由黄金分割点的定义得到AP=AB,把AB=4代入计算即可.
【详解】
解:∵点P在线段AB上,AP2=AB•BP,
∴点P是线段AB的黄金分割点,AP>BP,
∴AP=AB=×4=2﹣2,
故答案为:2﹣2.
【点睛】
本题考查了黄金分割点,牢记黄金分割比是解题的关键.
三、解答题
1、AE=8,BE=10.
【分析】
由△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,根据相似三角形的对应边成比例,即可求得答案.
【详解】
解:∵△ADE∽△ABC,
∴,
∵DE=8,BC=24,CD=18,AD=6,
∴AC=AD+CD=24,
∴AE=8,AB=18,
∴BE=AB-AE=10.
【点睛】
本题考查了相似三角形的性质.注意掌握相似三角形的对应边成比例定理的应用是解此题的关键.
2、
(1)-3,5
(2)3
(3)当t为或t=3或秒时,点B为M,N两点的“三倍距点”.
【分析】
(1)根据非负数的性质,即可求得a,b的值;
(2)根据“三倍距点”的定义即可求解;
(3)分点B为[M,N]的“三倍距点”和点B为[N,M]的“三倍距点”两种情况讨论即可求解.
(1)
解:∵(a+3)2+|b−5|=0,
∴a+3=0,b−5=0,
∴a=-3,b=5,
故答案为:-3,5;
(2)
解:∵点A所表示的数为-3,点B所表示的数为5,
∴AB=5-(-3)=8,
∵点C为[A,B]的“三倍距点”,点C在线段AB上,
∴CA=3CB,且CA+CB=AB=8,
∴CB=2,
∴点C所表示的数为5-2=3,
故答案为:3;
(3)
解:根据题意知:点M所表示的数为3t-3,点N所表示的数为t+5,
∴BM=,BN=,(t>0),
当点B为[M,N]的“三倍距点”时,即BM=3BN,
∴,
∴或,
解得:,
而方程,无解;
当点B为[N,M]的“三倍距点” 时,即3BM=BN,
∴,
∴或,
解得:或t=3;
综上,当t为或t=3或秒时,点B为M,N两点的“三倍距点”.
【点睛】
本题考查了非负数的性质,一元一次方程的应用、数轴以及绝对值,熟练掌握“三倍距点”的定义是解题的关键.
3、
(1)
(2)
【分析】
(1)提取公因式,然后用完全平方公式进行化简即可.
(2)提取公因式,然后用平方差公式进行化简即可.
(1)
解:原式;
(2)
解:原式
.
【点睛】
本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.
4、
【分析】
直接利用二次根式的性质化简进而得出答案.
【详解】
解:
【点睛】
此题主要考查了二次根式的乘除运算, 正确化简二次根式是解题关键.
5、,
【分析】
先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.
【详解】
解:
,
当,时,原式.
【点睛】
本题主要考查了整式的化简求值,去括号,含乘方的有理数混合计算,熟知相关计算法则是解题的关键.
【真题汇总卷】2022年中考数学第三次模拟试题(含答案及详解): 这是一份【真题汇总卷】2022年中考数学第三次模拟试题(含答案及详解),共32页。试卷主要包含了如图是三阶幻方的一部分,其每行,在,,, ,中,负数的个数有.,若,则下列不等式正确的是,不等式+1<的负整数解有等内容,欢迎下载使用。
【真题汇总卷】2022年天津市中考数学三年真题模拟 卷(Ⅱ)(含详解): 这是一份【真题汇总卷】2022年天津市中考数学三年真题模拟 卷(Ⅱ)(含详解),共20页。试卷主要包含了正八边形每个内角度数为,-6的倒数是,下列利用等式的性质,错误的是,的相反数是等内容,欢迎下载使用。
【历年真题】2022年河北省沧州市中考数学模拟真题 (B)卷(含答案详解): 这是一份【历年真题】2022年河北省沧州市中考数学模拟真题 (B)卷(含答案详解),共21页。试卷主要包含了如图是三阶幻方的一部分,其每行等内容,欢迎下载使用。