【真题汇总卷】2022年河南省郑州市中考数学模拟定向训练 B卷(含详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,则代数式的值是( )
A.﹣3B.3C.9D.18
2、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第6个图中黑点的个数是( )
A.47B.62C.79D.98
3、下列各数中,是不等式的解的是( )
A.﹣7B.﹣1C.0D.9
4、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A.B.四边形EFGH是菱形
C.D.
5、若,则的值是( )
A.B.0C.1D.2022
6、由抛物线平移得到抛物线则下列平移方式可行的是( )
A.向左平移4个单位长度B.向右平移4个单位长度
C.向下平移4个单位长度D.向上平移4个单位长度
7、任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数.且p≤q),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:S(n)=,例如18可以分解成1×18,2×9或3×6,则S(18)==,例如35可以分解成1×35,5×7,则S(35)=,则S(128)的值是( )
A.B.C.D.
8、在2,1,0,-1这四个数中,比0小的数是( )
A.2B.0C.1D.-1
9、育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:
则a的值最有可能是( )
A.2700B.2780C.2880D.2940
10、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21B.25C.28D.29
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在,,,,中,负数共有______个.
2、若则______.
3、已知是方程的解,则a的值是______.
4、如图,从一块直径为2cm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为______cm2.
5、若,则的值是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,C,D是以AB为直径的半圆周的三等分点,CD=8cm.
(1)求∠ACD的度数;
(2)求阴影部分的面积.
2、如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长交y轴于点E.
(1)求证:△OBC≌△ABD.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.
(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?
3、计算
(1)
(2)
4、用一面足够长的墙为一边,其余各边用总长42米的围栏建成如图所示的生态园,中间用围栏隔开.由于场地限制,垂直于墙的一边长不超过7米.(围栏宽忽略不计)
(1)若生态园的面积为144平方米,求生态园垂直于墙的边长;
(2)生态园的面积能否达到150平方米?请说明理由.
5、先化简,再求值:,其中.
-参考答案-
一、单选题
1、C
【分析】
由已知得到,再将变形,整体代入计算可得.
【详解】
解:∵,
∴,
∴
=
=
=9
故选:C.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.
2、A
【分析】
根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,即可求解.
【详解】
解:根据题意得:第1个图中黑点的个数是 ,
第2个图中黑点的个数是 ,
第3个图中黑点的个数是,
第4个图中黑点的个数是 ,
……,
由此发现,第 个图中黑点的个数是 ,
∴第6个图中黑点的个数是 .
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:A
【点睛】
本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.
3、D
【分析】
移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.
【详解】
解:移项得:,
∴9为不等式的解,
故选D.
【点睛】
本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.
4、C
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
5、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
6、A
【分析】
抛物线的平移规律:上加下减,左加右减,根据抛物线的平移规律逐一分析各选项即可得到答案.
【详解】
解:抛物线向左平移4个单位长度可得: 故A符合题意;
抛物线向右平移4个单位长度可得:故B不符合题意;
抛物线向下平移4个单位长度可得: 故C不符合题意;
抛物线向上平移4个单位长度可得: 故D不符合题意;
故选A
【点睛】
本题考查的是抛物线图象的平移,掌握“抛物线的平移规律”是解本题的关键.
7、A
【分析】
由128=1×128=2×64=4×32=8×16结合最佳分解的定义即可知F(128)=.
【详解】
解:∵128=1×128=2×64=4×32=8×16,
∴F(128)=,
故选:A.
【点睛】
本题主要考查有理数的混合运算.理解题意掌握最佳分解的定义是解题的关键.
8、D
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
9、C
【分析】
计算每组小麦的发芽率,根据结果计算.
【详解】
解:∵
∴=2880,
故选:C.
【点睛】
此题考查了数据的频率估计概率,正确掌握频率公式计算频率是解题的关键.
10、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
二、填空题
1、3
【分析】
将各数化简,即可求解.
【详解】
解:∵,,,,,
∴负数有,,,共3个.
故答案为:3
【点睛】
本题主要考查了乘方的运算,绝对值的性质,有理数的分类,熟练掌握乘方的运算,绝对值的性质,有理数的分类是解题的关键.
2、
【分析】
用含b的式子表示a,再把合分比式中a换成含b的式子约分即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:∵,
∴,
∴.
故答案为.
【点睛】
本题考查合分比性质问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.
3、4
【分析】
把代入方程得到关于的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.
【详解】
解:把代入方程得:
,
去括号得:,
系数化为1得:,
故答案为:4.
【点睛】
本题考查了一元一次方程的解,解题的关键是正确掌握解一元一次方程的方法.
4、
【分析】
连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式进行求解即可.
【详解】
解:如图,连接AC,
∵从一块直径为2cm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,
∴AC为直径,即AC=2cm,AB=BC(扇形的半径相等),
∵在中,,
∴AB=BC=,
∴阴影部分的面积是 (cm2).
故答案为:.
【点睛】
本题考查了圆周角定理和扇形的面积计算,熟记扇形的面积公式是解题的关键.
5、
【分析】
根据绝对值、平方的非负性,可得 ,再代入即可求解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:∵,
∴ ,
解得: ,
∴.
故答案为:
【点睛】
本题主要考查了绝对值、平方的非负性,乘方运算,熟练掌握绝对值、平方的非负性,乘方运算法则是解题的关键.
三、解答题
1、
(1)
(2)
【分析】
(1)连接、,根据,是以为直径的半圆周的三等分点,证明出、是等边三角形,即可求解;
(2)根据(1)得、是等边三角形,证明出,可以将问题转化为,即可求解.
(1)
解:解:连接、,
,是以为直径的半圆周的三等分点,
,,
又,
、是等边三角形,
;
(2)
解:根据(1)得、是等边三角形,
在和中,,
,
.
【点睛】
本题考查了扇形面积的计算,全等三角形的判定及性质、圆心角定理,解题的关键是将阴影部分的面积转化为扇形的面积,难度一般.
2、(1)见解析;(2)点C在运动过程中,∠CAD的度数不会发生变化,∠CAD=60°;(3)当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
【分析】
(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;
(2)由△AOB是等边三角形知∠BOA=∠OAB=60°,再由△OBC≌△ABD知∠BAD=∠BOC=60°,根据∠CAD=180°-∠OAB-∠BAD可得结论;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)由(2)易求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.
【详解】
解:(1)∵△AOB,△CBD都是等边三角形,
∴OB=AB,CB=DB,∠ABO=∠DBC,
∴∠OBC=∠ABD,
在△OBC和△ABD中,
∵,
∴△OBC≌△ABD(SAS);
(2)点C在运动过程中,∠CAD的度数不会发生变化,理由如下:
∵△AOB是等边三角形,
∴∠BOA=∠OAB=60°,
∵△OBC≌△ABD,
∴∠BAD=∠BOC=60°,
∴∠CAD=180°-∠OAB-∠BAD=60°;
(3)由(2)得∠CAD=60°,
∴∠EAC=180°-∠CAD =120°,
∴∠OEA=∠EAC-90°=30°,
∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,
在Rt△AOE中,OA=1,∠OEA=30°,
∴AE=2,
∴AC=AE=2,
∴OC=1+2=3,
∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
【点睛】
本题是三角形的综合问题,主要考查了全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是利用等腰三角形的性质求出点C的坐标.
3、
(1)7;
(2).
【分析】
(1)先计算乘方,再计算乘除,去括号,再计算加减即可;
(2)先变带分数为假分数,把除变乘,利用乘法分配律简算,再计算加法即可.
(1)
解:,
=,
=,
=,
=7;
(2)
解:,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
=,
=,
=,
=,
=.
【点睛】
本题考查含乘方的有理数混合运算,掌握运算法则,先乘方,再乘除,最后加减,有括号先算小括号,中括号,再大括号,能简算的可简算.
4、
(1)6米
(2)不能达到,理由见解析
【分析】
(1)设生态园垂直于墙的边长为x米,则可得生态园平行于墙的边长,从而由面积关系即可得到方程,解方程即可;
(2)方法与(1)相同,判断所得方程有无解即可.
(1)
设生态园垂直于墙的边长为x米,则x≤7,生态园平行于墙的边长为(42-3x)米
由题意得:x(42-3x)=144
即
解得:(舍去)
即生态园垂直于墙的边长为6米.
(2)
不能,理由如下:
设生态园垂直于墙的边长为y米,则生态园平行于墙的边长为(42-3y)米
由题意得:y(42-3y)=150
即
由于
所以此一元二次方程在实数范围内无解
即生态园的面积不能达到150平方米.
【点睛】
本题考查了一元二次方程在实际生活中的应用,理解题意并根据等量关系正确列出方程是解题的关键.
5、,
【分析】
先对括号里进行通分、合并同类项,然后进行乘除运算化为最简,最后代值求解即可.
【详解】
解:原式
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当时,
原式.
【点睛】
本题考查了分式的混合运算以及二次根式的混合运算.解题的关键在于熟练掌握混合运算的运算法则.
抽查小麦粒数
100
300
800
1000
2000
3000
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
发芽粒数
96
287
770
958
1923
a
【真题汇总卷】2022年浙江省台州市中考数学模拟定向训练 B卷(含答案详解): 这是一份【真题汇总卷】2022年浙江省台州市中考数学模拟定向训练 B卷(含答案详解),共24页。试卷主要包含了下列计算正确的是,如图所示,该几何体的俯视图是,多项式去括号,得,-6的倒数是等内容,欢迎下载使用。
【真题汇总卷】2022年四川省内江市中考数学模拟定向训练 B卷(含详解): 这是一份【真题汇总卷】2022年四川省内江市中考数学模拟定向训练 B卷(含详解),共25页。试卷主要包含了下列说法正确的是,下列关于整式的说法错误的是等内容,欢迎下载使用。
【真题汇总卷】2022年唐山滦州市中考数学模拟定向训练 B卷(含详解): 这是一份【真题汇总卷】2022年唐山滦州市中考数学模拟定向训练 B卷(含详解),共23页。试卷主要包含了把 写成省略括号后的算式为,下列计算等内容,欢迎下载使用。