沪科版九年级下册第25章 投影与视图综合与测试同步达标检测题
展开沪科版九年级数学下册第25章投影与视图专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是( )
A. B.
C. D.
2、如图所示的几何体的左视图是( )
A. B. C. D.
3、如图所示的礼品盒的主视图是( )
A. B. C. D.
4、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:
(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;
(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;
(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;
(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19
其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
5、如图是由4个相同的正方体组成的立体图形,它的左视图是( )
A. B. C. D.
6、如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是( )
A. B. C. D.
7、如图,将一块含30°角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB=10,BE=3,则AB在直线m上的正投影的长是( )
A.5 B.4 C.3+4 D.4+4
8、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )
A. B. C. D.
9、下列四个几何体中,主视图与俯视图不同的几何体是( )
A. B.
C. D.
10、如图,该几何体的俯视图是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号.
—————— ——————
—————— ——————
2、若干个小正方体组成一个几何体,从正面和左面看都是如图所示的图形, 则需要这样小正方体至少______块.
3、一个“粮仓”的三视图如图所示(单位:m),则它的体积是____
4、下图是由若干个相同的小正方体组合而成的一个几何体的三视图,则组成这个几何体的小正方体个数是_________.
5、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为_____cm2.
三、解答题(5小题,每小题10分,共计50分)
1、补全如图立体图形的三视图.
2、如图,由10个同样大小的小正方体搭成的几何体.
(1)请分别画出几何体从正面和从上面看到的形状图:
(2)设每个正方体的棱长为1,求出上图原几何体的表面积;
(3)如果从这个几何体上取出一个小正方体,在表面标上整数a、b、c、d、e、f,然后将其剪开展开成平面图形如图所示放置,已知正方体相对的面上的数互为相反数,若整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,求下列代数式的值.
3、如图是由几个相同的边长为1个单位的小立方块搭成的几何体从上面看到的形状,方格中的数字表示该位置的小立方块的个数.
(1)请在方格纸中分别画出从正面和左面所观察到的几何体的形状;
(2)由三个不同方向所观察到的图形可知这个组合几何体的表面积为________个平方单位(包括底面积).
4、一个物体由几个相同的正方体堆叠成,从三个不同方向观察得到的图形如图所示,试回答下面的问题:
(1)该物体共有几层?
(2)一共需要几个正方体叠成?
5、一个几何体模具由大小相同边长为2分米的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置上的小立方块的个数.
(1)若工人师傅手里还有一些相同的正方体,如果要保持从上面和从左面看到的形状不变,最多可以添加______个正方体;
(2)请画出从正面和从左面看到的这个几何体模具的形状图;
(3)为了模具更为美观,工人师傅将对模具的表面进行喷漆,请问工人师傅需要喷漆多少平方分米?
-参考答案-
一、单选题
1、B
【分析】
根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形.
【详解】
解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,
故选B.
【点睛】
本题考查从不同方向看几何体.做此类题,最好是逐列分析每一列中正方形的个数然后组合即可.
2、D
【分析】
根据左视图的定义即可得.
【详解】
解:左视图是指从左面观察几何体所得到的视图,
这个几何体的左视图是,
故选:D.
【点睛】
本题考查了左视图,熟记定义是解题关键.
3、B
【分析】
找出从几何体的正面看所得到的图形即可.
【详解】
解:从礼品盒的正面看,可得图形:
故选:B.
【点睛】
此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.
4、B
【分析】
根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);
作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可.为
【详解】
解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开12﹣5=7条棱.
(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.
(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;错误,因为△ABC是等边三角形,所以∠ABC=60°.
(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19.错误,应该是a=6,b=11,a+b=17.
故选:B.
【点睛】
此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.
5、A
【分析】
从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.
【详解】
从左面看所得到的图形为A选项中的图形.
故选A
【点睛】
本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
6、C
【分析】
长方体的左视图为矩形,圆柱的左视图为矩形,据此分析即可得左视图
【详解】
从左面可看到一个长方形和一个长方形,且两个长方形等高.
故选C
【点睛】
本题考查了简单几何题的三视图,掌握简单几何题的三视图是解题的关键.
7、C
【分析】
根据30°角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明△ACD∽△CBE,再根据相似三角形的性质可得CD的长,进而得出DE的长.
【详解】
解:在Rt△ABC中,∠ABC=30°,AB=10,
∴AC=AB=5,BC=AB•cos30°=10×,
在Rt△CBE中,CE=,
∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
∴Rt△ACD∽Rt△CBE,
∴,
∴CD=,
∴DE=CD+BE=,
即AB在直线m上的正投影的长是,
故选:C.
【点睛】
本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键.
8、A
【分析】
根据几何体的三视图解答即可.
【详解】
根据立体图形得到:
主视图为:,
左视图为:,
俯视图为:,
故选:
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
9、C
【分析】
正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.
【详解】
解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;
B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;
C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;
D、球体的主视图与俯视图都是圆形,故不符合题意.
故选:C.
【点睛】
本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.
10、A
【分析】
俯视图,从上面看到的平面图形,根据定义可得答案.
【详解】
解:从上面看这个几何体看到的是三个长方形,
所以俯视图是:
故选A
【点睛】
本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.
二、填空题
1、③①④②
【分析】
在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可.
【详解】
根据三视图的定义可知:第一个三视图所对应的几何体为③;
第二个三视图所对应的几何体为①;
第三个三视图对应的几何体为④;
第四个三视图对应的几何体为②;
故答案为:③①④②.
【点睛】
本题考查三视图,熟知三视图的定义是解题的关键.
2、5
【分析】
画出最少时俯视图即可解决问题.
【详解】
解:观察主视图和左视图可知这个几何体的小正方体的个数最少时,俯视图如图所示.
2+1+2=5,
故答案为5.
【点睛】
本题考查了三视图.从正面看,所得到的图形是主视图;从左面看,所得到的图形是左视图;从上面看,所得到的图形是俯视图.
3、
【分析】
根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算体积即可.
【详解】
解:观察发现该几何体为圆锥和圆柱的结合体,
其体积为:,
故答案为:
【点睛】
本题考查了根据三视图计算几何体的体积,由三视图还原几何题是解题的关键.
4、5
【分析】
利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.
【详解】
解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,
第二有1个小正方体,
因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.
故答案为:5.
【点睛】
本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.
5、
【分析】
有顺序的计算上下面,左右面,前后面的表面积之和即可.
【详解】
解:4×2+3×2+4×2=22(cm2).
所以该几何体的表面积为22cm2.
故答案为:22.
【点睛】
此题考查了几何体的表面积计算,解题的关键是分别判断出各个视图中小正方形的个数.
三、解答题
1、见解析
【分析】
根据简单几何体的三视图的画法,画出相应的图形即可,注意看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示.
【详解】
解:补全这个几何体的三视图如下:
.
【点睛】
本题考查了简单几何体的三视图,理解视图的意义,掌握简单几何体的三视图的画法是正确解答的前提.
2、(1)见解析;(2)38;(3)-1
【分析】
(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,1,2;从左面看有3列,每列小正方形数目分别为3,2,1;据此可画出图形;
(2)分别得到各个方向看的正方形面数,相加后乘1个面的面积即可求解;
(3)根据已知条件得出d,e,f的值,再根据正方体相对面的特点得到a,b,c的值,从而代入化简.
【详解】
解:(1)如图所示:
(2)(1×1)×(6×2+6×2+6×2+2)
=1×38
=38.
故该几何体的表面积是38.
(3)∵整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,
∴d=-1,e=1,f=15,
由图可知:“a”与“d”相对,“b”与“f”相对,“c”与“e”相对,
∴a=1,b=-15,c=-1,
∴.
【点睛】
本题考查了几何体的三视图画法,正方体展开图,由立体图形可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.
3、(1)图见解析;(2)24;
【分析】
(1)从正面看有2列,每列小正方形数目分别为2,3;从左面看有2列,每列小正方形数目分别为3,1;
(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.
【详解】
解:(1)如图所示
(2)根据从三个方向看的形状图,这个几何体的表面积为2×(5+4+3)=24(平方单位),
故答案为:24.
【点睛】
此题考查了从不同方向看几何体及几何体的表面积的计算,解答本题的关键是掌握立体图形的观察方法.
4、(1)三层;(2)9
【分析】
(1)由主视图与左视图可以得到该堆砌图形有3层;
(2)结合三种视图分析每个位置的小正方体的个数,再写在俯视图中,从而可得答案.
【详解】
解:(1)由主视图与左视图可得:这个物体一共有三层.
(2)结合三种视图可得:各个位置的小正方体的个数如图示:
所以这个图形一共由9个小正方体组成.
【点睛】
本题考查的是根据三视图还原几何体,掌握“由小正方体堆砌图形的三视图还原堆砌图形”是解本题的关键.
5、(1)5;(2)见解析;(3)工人师傅需要喷漆232平方分米
【分析】
(1)根据从上面和从左面看到的形状保持不变,可对每个位置增加正方体即可;
(2)根据每行和每列正方体的个数即可画出从正面和从左面看到的这个几何体模具的形状图;
(3)求出模具的表面积即可.
【详解】
(1)由题可知,可在第二行第一列增加1个正方体,第二行第二列增加3个正方体,第三行第二列增加1个正方体,
所以最多可以添加5个正方体
(2)画出从正面和从左面看到的形状图如下:
(3)工人师傅需要喷漆面积如下:
(平方分米)
答:工人师傅需要喷漆232平方分米.
【点睛】
本题考查三视图的画法以及表面积的求法,掌握从不同方向看物体的形状是解题的关键.
初中沪科版第25章 投影与视图综合与测试当堂达标检测题: 这是一份初中沪科版第25章 投影与视图综合与测试当堂达标检测题,共19页。试卷主要包含了下列物体中,三视图都是圆的是,如图,该几何体的左视图是,如图所示的几何体,其左视图是.,如图所示的几何体的主视图是,如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
数学九年级下册第25章 投影与视图综合与测试课后练习题: 这是一份数学九年级下册第25章 投影与视图综合与测试课后练习题,共20页。试卷主要包含了下面的三视图所对应的几何体是,下面图形是某几何体的三视图,如图所示,该几何体的俯视图是,如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
初中数学沪科版九年级下册第25章 投影与视图综合与测试复习练习题: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试复习练习题,共20页。试卷主要包含了如图所示的几何体,它的左视图是,如图所示,该几何体的俯视图是等内容,欢迎下载使用。