沪科版九年级下册第25章 投影与视图综合与测试一课一练
展开沪科版九年级数学下册第25章投影与视图定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,该几何体的俯视图是
A. B.
C. D.
2、如图,由一个圆柱体和一个长方体组成的几何体,其左视图是( )
A. B. C. D.
3、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )
A.6 B.7 C.8 D.9
4、如图,该几何体的俯视图是( )
A. B.
C. D.
5、如图所示的工件中,该几何体的俯视图是( )
A. B. C. D.
6、下面左侧几何体的主视图是( )
A. B. C. D.
7、如图是一个几何体的实物图,则其主视图是( )
A. B. C. D.
8、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为( )
A.6 B.7 C.10 D.1
9、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )
A. B. C. D.
10、如图所示的几何体的左视图是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、由若干个相同的小正方体搭成的几何体的三视图相同,如图所示.至少再加_____个小正方体,该几何体可成为一个正方体.
2、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是______.
3、如图是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为_______.
4、一个几何体由若干大小相同的小立方体搭成,下图分别是从它的正面、上面看到的形状图,该几何体最多用m个小立方体搭成,最少用n小立方体搭成,则m+n=_____.
5、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是________.
三、解答题(5小题,每小题10分,共计50分)
1、请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.
2、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状.
3、如图,是由一些棱长为1cm的小正方体组成的简单几何体
(1)请直接写出该几何体的表面积(含下底面)为
(2)从正面看到的平面图形如图所示,请在下面方格中分别画出从左向右、从上向下看到的平面图形
4、画出下列几何体的主视图、左视图与俯视图.
5、如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影).
-参考答案-
一、单选题
1、D
【分析】
根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.
【详解】
解:根据题意得:D选项是该几何体的俯视图.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
2、A
【分析】
从左边看过去:可以看到上下两个宽度相同的长方形,从而可以得到左视图.
【详解】
解:从左边看过去:可以看到上下两个宽度相同的长方形,
所以一个圆柱体和一个长方体组成的几何体,其左视图是A选项中的图形,
故选A
【点睛】
本题考查的是三视图,掌握“三视图中的左视图”是解本题的关键,注意的是能看到的棱要以实线来体现,看不见的棱要以虚线来体现.
3、B
【分析】
根据几何体的三视图特点解答即可.
【详解】
解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,
∴该几何体最少有4+2+1=7个小正方体组成,
故选:B.
【点睛】
本题考查几何体的三视图,掌握三视图的特点是解答的关键.
4、A
【分析】
俯视图,从上面看到的平面图形,根据定义可得答案.
【详解】
解:从上面看这个几何体看到的是三个长方形,
所以俯视图是:
故选A
【点睛】
本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.
5、B
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个同心圆,外圆是实线,内圆是虚线,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图.
6、A
【分析】
找出从几何体的正面看所得到的图形即可.
【详解】
解:从几何体的正面看,是一行两个并列的矩形.
故选:A.
【点睛】
本题主要考查了几何体的三视图,准确分析判断是解题的关键.
7、C
【分析】
找到从正面看所得到的图形即可.
【详解】
解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.
故选:C.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
8、C
【分析】
从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.
【详解】
解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.
由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.
因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.
故选:C.
【点睛】
题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.
9、C
【分析】
根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论.
【详解】
解:根据左视图的定义,该几何体的左视图是:
故选:C .
【点睛】
此题考查了几何体左视图的判断,掌握左视图的定义是解题关键.
10、B
【分析】
根据左视图是从左面看到的图形判定则可.
【详解】
解:从左边看,是一个正方形,正方形的右上角有一条虚线.
故选:B.
【点睛】
本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.
二、填空题
1、4
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,依此可得有几个小正方体,再用8减去小正方体的个数即可求解.
【详解】
解:根据三视图可得第一层有3个正方体,第二层有1个正方体,共有4个小正方体,
8﹣4=4(个).
故至少再加4个小正方体,该几何体可成为一个正方体.
故答案为:4.
【点睛】
本题主要考查三视图,能够根据三视图想象出立体图是解题的关键.
2、圆柱
【分析】
由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.
【详解】
解:∵主视图和左视图都是长方形,
∴此几何体为柱体,
∵俯视图是一个圆,
∴此几何体为圆柱.
故答案为:圆柱.
【点睛】
此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.
3、
【分析】
由三视图判断出几何体的形状以及相关长度,根据圆柱的体积公式计算即可.
【详解】
解:由三视图可知:该几何体是圆柱,
该圆柱的底面直径为2,高为3,
∴这个几何体的体积为=,
故答案为:.
【点睛】
本题考查了几何体的三视图,圆柱的体积,解题的关键是判断出该几何体为圆柱.
4、17
【分析】
从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,进而可得答案.
【详解】
解:如图,
m=2+2+2+2+2=10,n=2+2+1+1+1=7,
∴m+n=10+7=17,
故答案为:17.
【点睛】
此题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
5、
【分析】
由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.
【详解】
解:由几何体的三视图可得出原几何体为圆锥和圆柱组合体,
根据主视图中给定数据可知圆锥的母线长是3,底面圆的直径是4,圆柱的高是2,
因此圆锥的侧面积为:
圆柱的侧面积为:
底面圆的面积为:
因此这个几何体的表面积为:
故答案为:.
【点睛】
本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.
三、解答题
1、作图见解析
【分析】
主视图:从正面看到的平面图形,左视图:从左边看到的平面图形,俯视图:从上面看到的平面图形,根据三种视图的定义,再根据看到的平面图形作图即可.
【详解】
解:从正面可以看到5个正方形,分3列,依次为3个,1个,1个,
所以从正面看的主视图为:
从左面可以看到4个正方形,分2列,依次为3个,1个,
所以从左面看的左视图为:
从上面可以看到4个正方形,分3列,依次为1个,2个,1个,
所以从上面看的俯视图为:
【点睛】
本题考查的是作简单组合体的三视图,掌握“主视图,左视图,俯视图的含义”是解题的关键.
2、见解析
【分析】
读图可得,主视图有3列,每列小正方形数目分别为2,1,1;左视图有1列,小正方形数目分别为2;俯视图有3行,每行小正方形数目分别为1,1,1.
【详解】
如图所示:
【点睛】
此题考查作图-三视图,解题关键在于掌握作图法则.
3、(1)34 ;(2)见解析
【分析】
(1)先计算出每个小正方体一个面的面积,然后求出一共露在外面的面有多少个即可得到答案;
(2)根据三视图的画法作图即可.
【详解】
解:(1)∵每个小正方体的棱长为,
∴每个小正方体的一个面的面积为,
∵从上面看露在外面的小正方体的面有6个,从底面看露在外面的面有6个,从正面看,露在外面的面有6个,从后面看,露在外面的面有6个,从左面看,露在外面的面有4个,从右面看,露在外面的面有4个,然后在最下层,第二行第二列的小正方体右边1个面露在外面,第二行第四列的小正方体左边一个面露在外面,
∴露在外面的面一共有34个,
∴该几个体的表面积为,
故答案为:;
(2)如图所示,即为所求;
【点睛】
本题主要考查了简单几何体的表面积和画三视图,解题的关键在于能够熟练掌握相关知识进行求解.
4、见解析
【分析】
主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
【详解】
如图所示:主视图
左视图
俯视图
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.
5、见解析
【分析】
直接利用左视图以及俯视图的观察角度分析得出答案;
【详解】
解:它的左视图和俯视图,如下图:
【点睛】
本题主要考查了简单几何体的三视图,正确注意观察角度是解题关键,主视图、俯视图、左视图分别是从物体的正面,上面、左面看得到的图形.
数学九年级下册第24章 圆综合与测试随堂练习题: 这是一份数学九年级下册第24章 圆综合与测试随堂练习题,共39页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
沪科版九年级下册第25章 投影与视图综合与测试测试题: 这是一份沪科版九年级下册第25章 投影与视图综合与测试测试题,共18页。试卷主要包含了如图所示的几何体的俯视图是,如图几何体的主视图是等内容,欢迎下载使用。
初中数学沪科版九年级下册第25章 投影与视图综合与测试综合训练题: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试综合训练题,共19页。试卷主要包含了下列立体图形的主视图是,下面左侧几何体的主视图是,下列物体中,三视图都是圆的是,如图所示的几何体的左视图是,分别从正面等内容,欢迎下载使用。