初中沪科版第25章 投影与视图综合与测试当堂检测题
展开沪科版九年级数学下册第25章投影与视图定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是( )
A. B.
C. D.
2、某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )
A. B.
C. D.
3、如图是由6个完全相同的小正方体组成的立体图形,这个立体图形的三视图中( )
A.主视图和俯视图相同 B.主视图和左视图相同
C.俯视图和俯视图相同 D.三个视图都相同
4、如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用( )个小正方体
A.12 B.11 C.10 D.9
5、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )
A. B. C. D.
6、分别从正面、左面和上面三个方向看下面哪个几何体,能得到右图所示的平面图形( )
A. B. C. D.
7、如图所示,该几何体的俯视图是
A. B.
C. D.
8、如图,从正面看这个几何体得到的图形是( )
A. B.
C. D.
9、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.
A.2 B.4 C.6 D.8
10、如图所示的几何体的俯视图是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、从正面和左面看一个长方体得到的形状图如图所示(单位:),则其从上面看到的形状图的面积为__________.
2、如图,从三个不同方向看同一个几何体得到的平面图形,则这个几何体的侧面积是__________.
3、如图,AB和DE是直立在地面上的两根立柱,AB=6(m),AB在阳光下的影长BC=3(m),在同一时刻阳光下DE的影长EF=4(m),则DE的长为________米.
4、如图,一个正方体由64块大小相同的小正方体搭成,现从中取走若干个小立方体块,得到一个新的几何体,新几何体与原几何体的三视图(从正面、从左面、从上面看到的所搭几何体的形状图)相同,最多取走___块小立方体块.
5、如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为_________厘米.
三、解答题(5小题,每小题10分,共计50分)
1、(1)一个几何体由一些大小相同的小正方体搭成,如图是从上面看这个几何体的形状图,小正方形中的数字表示在该位置的小正方体的个数,请在网格中画出从正面和左面看到的几何体的形状图.
(2)用小立方块搭一几何体,使它从正面看,从左面看,从上面看得到的图形如图所示.请在从上面看到的图形的小正方形中填人相应的数字,使得小正方形中的数字表示在该位置的小立方块的个数.其中,图1填人的数字表示最多组成该几何体的小立方块的个数,图2填入的数字表示最少组成该几何体的小立方块的个数.
2、一个几何体由几个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面和左面看到的这个几何体的形状图.
3、如图是由几个相同的边长为1个单位的小立方块搭成的几何体从上面看到的形状,方格中的数字表示该位置的小立方块的个数.
(1)请在方格纸中分别画出从正面和左面所观察到的几何体的形状;
(2)由三个不同方向所观察到的图形可知这个组合几何体的表面积为________个平方单位(包括底面积).
4、如图,在平整的地面上,若干个棱长都为的小正方体堆成一个几何体.
(1)在网格中,用实线画出从正面,上面,左面看到的形状图;
(2)求这个几何体的体积和表面积.
5、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.
(1)请画出这个几何体的三视图;
(2)该几何体的表面积(含下底面)为 ;
(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加 个小正方体.
-参考答案-
一、单选题
1、B
【分析】
根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形.
【详解】
解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,
故选B.
【点睛】
本题考查从不同方向看几何体.做此类题,最好是逐列分析每一列中正方形的个数然后组合即可.
2、C
【分析】
根据三视图判断即可;
【详解】
的左视图、主视图是三角形,俯视图是圆,故A不符合题意;
的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;
的主视图、左视图、俯视图都是正方形,故C符合题意;
的左视图、主视图是长方形,俯视图是圆,故D不符合题意;
故选C.
【点睛】
本题主要考查了几何体三视图的判断,准确分析是解题的关键.
3、B
【分析】
主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
【详解】
解:主视图和左视图相同,均有三列,小正方形的个数分别为1、2、1;
俯视图也有三列,但小正方形的个数为1、3、1.
故选:B.
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.
4、D
【分析】
根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.
【详解】
解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;
∴这个几何体最少需要用个小正方体.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.
5、C
【分析】
根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论.
【详解】
解:根据左视图的定义,该几何体的左视图是:
故选:C .
【点睛】
此题考查了几何体左视图的判断,掌握左视图的定义是解题关键.
6、D
【分析】
由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.
【详解】
解:∵主视图和左视图都是长方形,
∴此几何体为柱体,
∵俯视图是一个三角形,
∴此几何体为三棱柱.
故选:D.
【点睛】
本题主要考查了由三视图判断几何体,解题的关键是熟练掌握由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.
7、D
【分析】
根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.
【详解】
解:根据题意得:D选项是该几何体的俯视图.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
8、A
【分析】
首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.
【详解】
解:观察图形从左到右小正方块的个数分别为1,2,1,
故选A.
【点睛】
本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键.
9、B
【分析】
根据题意,画出示意图,易得:△EDC∽△FDC,进而可得,即DC2=ED•FD,代入数据可得答案.
【详解】
解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=8m;
∵∠E+∠F=90°,∠E+∠ECD=90°,
∴∠ECD=∠F,
∴△EDC∽△FDC,
∴,即DC2=ED•FD=2×8=16,
解得CD=4m.
故选:B.
【点睛】
本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键.
10、D
【分析】
根据从上面看得到的图形是俯视图,可得答案.
【详解】
从上面看得到的图形是
故选D
【点睛】
本题考查了三视图的知识,掌握从上边看得到的图形是俯视图是关键.
二、填空题
1、6
【分析】
从正面看,左面看,得到长方体的高为4,长为3,得到从上面看的矩形长为3;左边看,从上面看,宽相等,得到从上面看的矩形宽为2,计算即可.
【详解】
根据正面,左面高平齐,正面,上面长对正,左面,上面宽相等,得到从上面看的矩形长为3,宽为2
故从上面看到的形状图的面积为6,
故答案为:6.
【点睛】
本题考查了从不同方向看,熟练掌握三视图的特点与联系是解题的关键.
2、36
【分析】
先确定该几何体是三棱柱,再得到底面是边长为4cm的等边三角形,侧棱长为3cm,从而可得答案.
【详解】
解:从三视图可得得到:这个几何体是三棱柱,
其底面是边长为4cm的等边三角形,侧棱长为3cm,
所以这个三棱柱的侧面积为:cm2
故答案为:36 cm2
【点睛】
本题考查的是简单几何体的三视图,根据三视图还原几何体,求解三棱柱的侧面积,掌握由三视图还原几何体是解题的关键.
3、8
【分析】
连接,,根据平行投影的性质得,根据平行的性质可知,利用相似三角形对应边成比例即可求出的长.
【详解】
解:如图,连接AC ,DF,根据平行投影的性质得DF∥AC,
,
,
,
,
,
.
故答案为:8.
【点睛】
本题主要考查相似三角形的判定和性质,掌握相似三角形的判定定理以及性质是解题的关键.
4、8
【分析】
由题意得,只需保留原几何的最外层和底层,最中间有8块,即可得.
【详解】
解: ∵新几何体与原几何体的三视图相同,
∴只需保留原几何的最外层和底层,
∴最中间有(块),
故答案为:8.
【点睛】
本题考查了正方体的三视图,解题的关键是掌握正方体的三视图.
5、
【分析】
由正视图可知,高是20cm,两顶点之间的最大距离为60cm,利用正六边形的性质求得底面AD,然后所有棱长相加即可.
【详解】
根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边,
因为正六边形的直径为60cm,
则AC=60÷2=30(cm),∠ACD=120°,
作CB⊥AD于点B,
那么AB=AC×sin60°=30×=15(cm),
所以AD=2AB=30(cm),
胶带的长至少=(cm).
故答案为:.
【点睛】
本题考查了正六边形的性质、立体图形的三视图和学生的空间想象能力;注意知道正六边形两个顶点间的最大距离求对边之间的距离需构造直角三角形利用相应的三角函数求解.
三、解答题
1、(1)见解析;(2)见解析
【分析】
(1)根据俯视图中小正方体的个数结合主视图,主视图是从前面向后看得到的图形,从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形画出图形,根据俯视图中小正方体的个数结合左视图,左视图是从左边向右看得到的图形,从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形画出图形即可;
(2)根据俯视图的图形两行三列,中间列一行,从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或2个正方体,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,右边列后行可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2在俯视图中标出个数即可.
【详解】
解:(1)从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形,如图
从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形,
如图所示:
(2)从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,
从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,
左列前行可以是1个正方体或两个正方体,,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,后列可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2.
根据题意,填图如下:
【点睛】
本题考查根据俯视图画主视图与左视图,根据主视图与左视图确定组成图形的正方体的个数,从立体图形到平面图形的转化三视图,由平面图形三视图到立体图形还原几何体空间想象能力,本题难度较大,培养空间想象力,掌握相关知识是解题关键.
2、答案见解析
【分析】
根据题目条件可知,该几何体从正面看有3列,各列中小正方形的数目分别为2,2和3;从左面看有2列,各列中小正方形的数目分别为3和2;据此可画出图形.
【详解】
解:从正面看到的该几何体的形状图如下图所示:
从左面看到的该几何体的形状图如下图所示:
【点睛】
本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字;左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中小正方形数字中的最大数字.
3、(1)图见解析;(2)24;
【分析】
(1)从正面看有2列,每列小正方形数目分别为2,3;从左面看有2列,每列小正方形数目分别为3,1;
(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.
【详解】
解:(1)如图所示
(2)根据从三个方向看的形状图,这个几何体的表面积为2×(5+4+3)=24(平方单位),
故答案为:24.
【点睛】
此题考查了从不同方向看几何体及几何体的表面积的计算,解答本题的关键是掌握立体图形的观察方法.
4、(1)见解析;(2),
【分析】
(1)根据三视图的定义画出图形即可.
(2)分前后,左右,上下三个方向统计正方形的个数即可求出表面积,根据个数即可得出体积.
【详解】
解:(1)该几何体从正面、上面、左面看到的形状图如图:
(2)因为该几何体由8个棱长都为的正方体堆成,
每个正方体的体积都为,所以其体积为;
该几何体前后各有4个小正方形,上下各有6个小正方形,左右各有5个小正方形,
每个小正方形的面积为,所以其表面积为.
【点睛】
本小题考查几何体、三视图等基础知识,考查空间观念与几何直观,解题的关键是熟练掌握基本知识,属于中考常考题型.
5、(1)见解析;(2)28;(3)2
【分析】
(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;
(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;
(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.
【详解】
(1)如图所示:
(2)(4×2+6×2+4×2)×(1×1)
=(8+12+8)×1
=28
故答案为:28
(3)由分析可知,最多可以再添加2个小正方体,如图,
故答案为:2
【点睛】
此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.
初中第25章 投影与视图综合与测试练习: 这是一份初中第25章 投影与视图综合与测试练习,共18页。试卷主要包含了图中几何体的左视图是等内容,欢迎下载使用。
初中数学沪科版九年级下册第25章 投影与视图综合与测试综合训练题: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试综合训练题,共19页。试卷主要包含了下列立体图形的主视图是,下面左侧几何体的主视图是,下列物体中,三视图都是圆的是,如图所示的几何体的左视图是,分别从正面等内容,欢迎下载使用。
初中数学沪科版九年级下册第25章 投影与视图综合与测试综合训练题: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试综合训练题,共16页。试卷主要包含了分别从正面,如图所示的几何体的左视图是等内容,欢迎下载使用。