数学九年级下册第25章 投影与视图综合与测试课后练习题
展开
这是一份数学九年级下册第25章 投影与视图综合与测试课后练习题,共20页。试卷主要包含了下面的三视图所对应的几何体是,下面图形是某几何体的三视图,如图所示,该几何体的俯视图是,如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )A. B. C. D.2、如图是由4个相同的正方体组成的立体图形,它的左视图是( )A. B. C. D.3、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.A.2 B.4 C.6 D.84、如图所示,沿正方体相邻的三条棱的中点截掉一个角,则它的左视图是( )A. B.C. D.5、下面的三视图所对应的几何体是( )A. B. C. D.6、下面图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )A.四棱柱 B.四棱锥 C.圆柱 D.圆锥7、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )A. B.C. D.8、如图所示,该几何体的俯视图是A. B.C. D.9、如图是下列哪个立体图形的主视图( )A. B.C. D.10、如图是从不同方向看某个立体图形所得到的平面图形,则这个立体图形是( )A.三棱柱 B.三棱锥 C.圆柱 D.圆锥第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、根据三视图,这个几何体的侧面积是 ___.2、如图是一个几何体的三视图,该几何体的体积是_____.3、如图是某几何体的三视图.已知主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,若矩形的长为3,宽为2,则这个几何体的体积为_________.4、如图,是一个直棱柱的三视图,这个直棱柱的表面积是_____.5、一个几何体是由一些大小相同的校正方体摆成的,从正面看与从上面看得到的形状如图所示,则组成这个几何体的校正方体最多有_________个三、解答题(5小题,每小题10分,共计50分)1、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图是一个由7个相同的小正方体搭成的几何体,请从图的正面、左面和上面看这个几何体,并在所给的图中画出各自的图形.2、如图是由4块小立方块所搭成的几何体从上面看到的图形,小正方形中的数字表示该位置小立方块的个数,请画出它的左视图和主视图.3、已知下图为一几何体从三个方向看到的形状图;(1)写出这个几何体的名称;(2)画出它的表面展开图;(3)根据图中所给的数据,求这个几何体的表面积.(结果保留)4、一个几何体由几个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面和左面看到的这个几何体的形状图.5、一个几何体由大小相同的小立方块搭成,箭头所指的为正面,请画出从正面、左面、上面看到的几何体的形状图. -参考答案-一、单选题1、B【分析】根据左视图是从左面看得到的图形,可得答案.【详解】解:从左边看,上面一层是一个正方形,下面一层是两个正方形,故选B【点睛】本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键.2、A【分析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.【详解】从左面看所得到的图形为A选项中的图形. 故选A【点睛】本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.3、B【分析】根据题意,画出示意图,易得:△EDC∽△FDC,进而可得,即DC2=ED•FD,代入数据可得答案.【详解】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=8m;∵∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,∴△EDC∽△FDC,∴,即DC2=ED•FD=2×8=16,解得CD=4m.故选:B.【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键.4、C【分析】根据从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,由此求解即可【详解】解:由题意得:从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,故选C.【点睛】本题主要考查了几何体的三视图,解题的关键在于能够熟练掌握三视图的定义.5、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案.【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C.【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.6、C【分析】根据三视图即可完成.【详解】此几何体为一个圆柱故选:C.【点睛】本题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.7、D【分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.8、D【分析】根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.【详解】解:根据题意得:D选项是该几何体的俯视图.故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.9、B【分析】根据主视图即从物体正面观察所得的视图求解即可.【详解】解:的主视图为,故选:B.【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.10、A【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由主视图和左视图为长方形判断出是柱体,由俯视图是三角形可判断出这个几何体应该是三棱柱.故选:A.【点睛】本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为三角形就是三棱柱.二、填空题1、200π【分析】根据三视图确定几何体为圆柱,侧面积为2πrh,结合主视图确定h,结合俯视图确定底面圆的直径,计算即可.【详解】∵,∴几何体为圆柱,且圆柱的高为h=20,底面圆的直径为10,∴侧面积为2πrh=10×20×π=200π.故答案为:200π.【点睛】本题考查了几何体的三视图,结合体侧面积计算,熟练掌握常见几何体的三视图及其侧面积计算公式是解题的关键.2、【分析】由三视图可知。这个立体图形是圆柱,因此根据圆柱的体积公式进行求解即可得到答案.【详解】解:由三视图可知。这个立体图形是圆柱,且底面圆的直径是2,圆柱的高为4∴故答案为:.【点睛】本题主要考查了立体图形的三视图和圆柱的体积计算,解题的关键在于根据三视图确定立体图形的形状.3、【分析】根据三视图可知这个几何题为圆柱体,进而根据圆柱体的体积等于底面积乘以高即可求得【详解】主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,这个几何题为圆柱体,这个圆柱体体积为故答案为:【点睛】本题考查了根据三视图还原几何体,掌握基本几何体的三视图是解题的关键.4、36【分析】由三视图可得这是一个直三棱柱,再把各个面的面积相加即可.【详解】解:由三视图可得这是一个直三棱柱,它的高为2,∵32+42=52,∴这个直三棱柱的底面的直角三角形,∴这个直三棱柱的表面积为:=36.故答案为:36.【点睛】此题考查由三视图判断几何体,掌握几何体的特征以及面积的计算方法是解决问题的关键.5、6【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方块最多有3+3=6块.故答案为:6.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、解答题1、见解析【分析】主视图有3列,每列小正方形数目分别为,,;左视图有2列,每列小正方形数目分别为,;俯视图有3列,每行小正方形数目分别为,,.【详解】解:如图所示:【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.2、见解析【分析】根据已知图形得出实际摆放,进而利用从正面和左面观察得出图形即可.【详解】解:如图所示:【点睛】本题主要考查了画三视图,解题的关键件是根据已知正确得出图形的三视图.3、(1)圆柱体;(2)见解析;(3)【分析】(1)根据三视图的特征即可得出几何体;(2)根据圆柱体的特征,侧面展开为一个长方形,底面为两个圆,即可画出;(3)根据三视图可得:展开图中圆的直径为8,长方形的长为16,根据圆柱表面积的计算方法即可求得结果.【详解】解:(1)根据题目中已知的三视图符合圆柱体的三视图特征,故这个几何体为圆柱;(2)表面展开图如图所示:(3)展开图圆的周长为:;展开图圆的面积为:;∴这个几何体的表面积为:,∴这个几何体的表面积为.【点睛】题目主要考查三视图、几何体的侧面展开图及几何体的表面积计算方法,理解、看懂三视图是解题关键.4、答案见解析【分析】根据题目条件可知,该几何体从正面看有3列,各列中小正方形的数目分别为2,2和3;从左面看有2列,各列中小正方形的数目分别为3和2;据此可画出图形.【详解】解:从正面看到的该几何体的形状图如下图所示:从左面看到的该几何体的形状图如下图所示:【点睛】本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字;左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中小正方形数字中的最大数字.5、见解析【分析】从正面看:共有3列,从左往右分别有3,1,1个小正方形;从左面看:共有3列,从左往右分别有1,3,1个小正方形;从上面看:共分3列,从左往右分别有3,1,2个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】本题考查的是画简单组合体的三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形,理解三视图的含义是作图的关键.
相关试卷
这是一份沪科版九年级下册第25章 投影与视图综合与测试复习练习题,共19页。试卷主要包含了图中几何体的左视图是等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试课堂检测,共18页。试卷主要包含了如图所示的几何体的主视图是等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试习题,共20页。试卷主要包含了如图所示的支架,如图所示的几何体,其左视图是.等内容,欢迎下载使用。