![2021-2022学年度强化训练沪科版九年级数学下册第25章投影与视图定向测评试题第1页](http://www.enxinlong.com/img-preview/2/3/12678214/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪科版九年级数学下册第25章投影与视图定向测评试题第2页](http://www.enxinlong.com/img-preview/2/3/12678214/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪科版九年级数学下册第25章投影与视图定向测评试题第3页](http://www.enxinlong.com/img-preview/2/3/12678214/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第25章 投影与视图综合与测试测试题
展开这是一份沪科版九年级下册第25章 投影与视图综合与测试测试题,共19页。
沪科版九年级数学下册第25章投影与视图定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是由5个完全相同的小正方体组成的立体图形,这个立体图形的主视图是( )
A. B.C. D.
2、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
3、下列几何体的主视图和俯视图完全相同的是( )
A. B. C. D.
4、如图是由4个相同的正方体组成的立体图形,它的左视图是( )
A. B. C. D.
5、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )
A. B.
C. D.
6、下列四个几何体中,主视图与俯视图不同的几何体是( )
A. B.
C. D.
7、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.
A.2 B.4 C.6 D.8
8、如图是由5个相同的小正方体搭成的几何体,它的左视图是( ).
A. B. C. D.
9、水平放置的下列几何体,主视图不是矩形的是( )
A. B.
C. D.
10、如图所示几何体的左视图是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、从正面和左面看一个长方体得到的形状图如图所示(单位:),则其从上面看到的形状图的面积为__________.
2、如图为一个圆锥的三视图,这个圆锥的侧面积为_________.
3、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是________.
4、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是______(填写“平行投影”或“中心投影”)
5、根据三视图,这个几何体的侧面积是 ___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.
2、如图,这个几何体是由若干个棱长为1cm的小正方体搭成的.
(1)请画出从正面、左面、上面看到的几何体的形状图.
(2)求出从正面、左面、上面看到的几何体的表面积之和是多少.
3、如图所示是一个用小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的主视图与左视图.
4、如图所示的几何体是由几个相同的小正方体排成2行组成的.
(1)填空:这个几何体由_______个小正方体组成;
(2)画出该几何体的三个视图.
(3)若每个小正方体的边长为1cm,则这个几何体的表面积为 cm2
5、将6个棱长为3cm的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.
(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.
(2)求该几何体被染成红色部分的面积.
-参考答案-
一、单选题
1、B
【分析】
从正面看到的平面图形是主视图,根据主视图的含义逐一判断即可.
【详解】
解:从正面可以看到2行3列的小正方形图形,第1行1个正方形,第2行3个正方形,按1,2,1的方式排列,
所以主视图是B,
故选B
【点睛】
本题考查的是三视图,掌握识别主视图是解本题的关键,注意的是能看到的棱都要画成实线,看不到的棱画成虚线.
2、B
【分析】
根据左视图是从左面看得到的图形,可得答案.
【详解】
解:从左边看,上面一层是一个正方形,下面一层是两个正方形,
故选B
【点睛】
本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键.
3、D
【分析】
根据主视图和俯视图是分别从物体正面和上面看到的图形,逐项分析即可.
【详解】
解:A、圆柱主视图是矩形,俯视图是圆,故A选项不合题意;
B、圆锥的主视图是等腰三角形,俯视图是圆以及中心有一个点,故B选项不合题意;
C、三棱柱主视图是一行两个矩形且公共边是虚线,俯视图是三角形,故C选项不合题意;
D、圆的主视图和俯视图都为圆,故D选项符合题意;
故选D.
【点睛】
本题考查简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,俯视图是从物体的上面看得到的视图.
4、A
【分析】
从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.
【详解】
从左面看所得到的图形为A选项中的图形.
故选A
【点睛】
本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
5、D
【分析】
左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.
【详解】
解:该几何体从左面看到的形状图有2列,
第1列看到1个正方形,第2列看到2个正方形,
所以左视图是D,
故选D
【点睛】
本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.
6、C
【分析】
正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.
【详解】
解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;
B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;
C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;
D、球体的主视图与俯视图都是圆形,故不符合题意.
故选:C.
【点睛】
本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.
7、B
【分析】
根据题意,画出示意图,易得:△EDC∽△FDC,进而可得,即DC2=ED•FD,代入数据可得答案.
【详解】
解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=8m;
∵∠E+∠F=90°,∠E+∠ECD=90°,
∴∠ECD=∠F,
∴△EDC∽△FDC,
∴,即DC2=ED•FD=2×8=16,
解得CD=4m.
故选:B.
【点睛】
本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键.
8、B
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.
【详解】
从左面看,第一层有2个正方形,第二层左侧有1个正方形.
故选:B.
【点睛】
本题考查了三视图的知识,熟知左视图是从物体的左面看得到的视图是解答本题的关键.
9、C
【分析】
根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断
【详解】
解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形
故C选项符合题题意,
故选C
【点睛】
本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键.
10、D
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中.
【详解】
解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,
故选:D
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.
二、填空题
1、6
【分析】
从正面看,左面看,得到长方体的高为4,长为3,得到从上面看的矩形长为3;左边看,从上面看,宽相等,得到从上面看的矩形宽为2,计算即可.
【详解】
根据正面,左面高平齐,正面,上面长对正,左面,上面宽相等,得到从上面看的矩形长为3,宽为2
故从上面看到的形状图的面积为6,
故答案为:6.
【点睛】
本题考查了从不同方向看,熟练掌握三视图的特点与联系是解题的关键.
2、
【分析】
利用三视图得到这个圆锥的高为8mm,底面圆的半径为6mm,再利用勾股定理计算出圆锥的母线长,然后利用扇形的面积公式计算圆锥的侧面积.
【详解】
解:这个圆锥的高为8mm,底面圆的半径为6mm,
所以圆锥的母线长=(mm),
所以圆锥的侧面积=(mm2).
故答案为:.
【点睛】
本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.也考查了圆锥的计算.
3、
【分析】
由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.
【详解】
解:由几何体的三视图可得出原几何体为圆锥和圆柱组合体,
根据主视图中给定数据可知圆锥的母线长是3,底面圆的直径是4,圆柱的高是2,
因此圆锥的侧面积为:
圆柱的侧面积为:
底面圆的面积为:
因此这个几何体的表面积为:
故答案为:.
【点睛】
本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.
4、中心投影
【分析】
根据平行投影和中心投影的定义解答即可.
【详解】
解:“皮影戏”中的皮影是中心投影.
故答案是中心投影.
【点睛】
本题主要考查了平行投影和中心投影,中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影.
5、200π
【分析】
根据三视图确定几何体为圆柱,侧面积为2πrh,结合主视图确定h,结合俯视图确定底面圆的直径,计算即可.
【详解】
∵,
∴几何体为圆柱,且圆柱的高为h=20,底面圆的直径为10,
∴侧面积为2πrh=10×20×π=200π.
故答案为:200π.
【点睛】
本题考查了几何体的三视图,结合体侧面积计算,熟练掌握常见几何体的三视图及其侧面积计算公式是解题的关键.
三、解答题
1、见解析.
【分析】
从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层,再画图即可.
【详解】
解:如图所示:
【点睛】
本题考查的是小正方体堆砌图形的三视图,掌握“三视图的含义”是画图的关键.
2、(1)见详解;(2)14cm2.
【分析】
(1)根据从正面看得到的图形画在第一个网格中,根据从左面看得到的图形画在第二个网格中,根据从上面看得到的图形画在第三个网格中;
(2)从正面看几何体的表面积为6cm2,从左面看几何体的表面积为4cm2,从上面看几何体的表面积为4cm2,利用加法运算求它们的和即可.
【详解】
(1)从正面看得到的图形为主视图从左到右3列,左数第一列3个小正方形,第2列2个小正方形,第3列1个小正方形,下方对齐;
从左面看得到的图形是左视图从左到右2列,左数第1列3个小正方形,第2列1个小正方形下方对齐;
从上面看得到的图形是俯视图从左到右3列,第1列2个小正方形,第2列1个小正方形,第3列1个小正方形,上对齐;
(2)从正面看几何体的表面积为6cm2,从左面看几何体的表面积为4cm2,从上面看几何体的表面积为4cm2,
从正面、左面、上面看到的几何体的表面积之和6+4+4=14cm2.
【点睛】
本题考查由正方体找出简单组合体的三视图,从不同方向看到的表面积,掌握简单组合体的三视图是解题关键.
3、见解析
【分析】
根据简单组合体的三视图的意义和画法画出相应的图形即可.
【详解】
这个组合体的三视图如下:
【点睛】
本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体三视图的画法是正确解答的关键.
4、(1)7;(2)见解析;(3)
【分析】
(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,即可求解;
(2)根据几何体的三视图的画法,画出图形,即可求解;
(3)根据几何体的表面积公式,即可求解.
【详解】
解:(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,
∴这个几何体由4+2+1=7个小正方体组成;
(2)该几何体的三个视图如图所示:
(3)根据题意得:这个几何体的表面积为
.
【点睛】
本题主要考查了画几何体的三视图,求几何体的表面积,熟练掌握几何体三视图的特征是解题的关键.
5、(1)见解析;(2)189cm2.
【分析】
(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为2,1,1;左视图有3列,每列小正方形数目分别为1,2,1;俯视图有3列,每列小正方数形数目分别为3,1,1.据此可画出图形;
(2)分别从前面,后面,左面,右面和上面数出被染成红色部分的正方形的个数,再乘以1个面的面积即可求解.
【详解】
解:(1)作图如下:
(2)(4+4+4+4+5)×(3×3)
=21×9
=189(cm2)
答:该几何体被染成红色部分的面积为189cm2.
【点睛】
本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.
相关试卷
这是一份数学九年级下册第25章 投影与视图综合与测试同步练习题,共20页。试卷主要包含了如图,几何体的左视图是,如图所示的几何体的俯视图是等内容,欢迎下载使用。
这是一份初中第25章 投影与视图综合与测试练习,共18页。试卷主要包含了图中几何体的左视图是等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试课堂检测,共18页。试卷主要包含了如图所示的几何体的主视图是等内容,欢迎下载使用。