沪科版九年级下册第25章 投影与视图综合与测试一课一练
展开这是一份沪科版九年级下册第25章 投影与视图综合与测试一课一练,共20页。试卷主要包含了如图所示的几何体的俯视图是,下面的三视图所对应的几何体是,如图所示几何体的左视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,该几何体的俯视图是( )
A. B.
C. D.
2、如图,几何体的左视图是( )
A. B. C. D.
3、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2m﹣n=( )
A.10 B.11 C.12 D.13
4、如图所示的几何体的俯视图是( )
A. B.
C. D.
5、下面的三视图所对应的几何体是( )
A. B.
C. D.
6、如图,由一个圆柱体和一个长方体组成的几何体,其左视图是( )
A. B. C. D.
7、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是( )
A.左视图和俯视图不变 B.主视图和左视图不变
C.主视图和俯视图不变 D.都不变
8、如图是由6个完全相同的小正方体组成的立体图形,这个立体图形的三视图中( )
A.主视图和俯视图相同 B.主视图和左视图相同
C.俯视图和俯视图相同 D.三个视图都相同
9、如图所示几何体的左视图是( )
A. B.
C. D.
10、下列几何体中,从正面看和从左面看形状均为三角形的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,最多和最少需要的小立方块相差______个.
2、如图是一个几何体的三视图,该几何体的体积是_____.
3、在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有____个.
4、若干个小正方体组成一个几何体,从正面和左面看都是如图所示的图形, 则需要这样小正方体至少______块.
5、用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要_____个小立方体,最多需要_____个小立方体.
三、解答题(5小题,每小题10分,共计50分)
1、一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如左图所示,小正方形中的数字表示在该位置的小正方块儿的个数.
(1)请在右边网格中画出从正面和左面看到的几何体的形状图.
(2)已知每个小正方块儿的棱长为2cm,求出这个几何体的表面积.
2、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状.
3、根据要求回答以下视图问题:
(1)如图①,它是由5个小正方体摆成的一个几何体,将正方体①移走后,新几何体与原几何体相比, 视图没有发生变化;
(2)如图②,请你在网格纸中画出该几何体的主视图(请用斜线阴影表示);
(3)如图③,它是由几个小正方体组成的几何体的俯视图,小正方形上的数字表示该位置上的正方体的个数,请在网格纸中画出该几何体的左视图(请用斜线阴影表示).
4、根据要求完成下列题目.
(1)图中有_____块小正方体.
(2)请在方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影).
(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要____个小正方体,最多要____个小正方体.
5、已知,如图,AB和DE是直立在地面上的两根立柱,AB=2m,某一时刻AB在太阳光下的投影BC=1m.
(1)请你在图中画出此时DE在太阳光下的投影EF;
(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF=1.5m,请你计算DE的长.
-参考答案-
一、单选题
1、A
【分析】
俯视图,从上面看到的平面图形,根据定义可得答案.
【详解】
解:从上面看这个几何体看到的是三个长方形,
所以俯视图是:
故选A
【点睛】
本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.
2、C
【分析】
找到从左面看所得到的图形,比较即可.
【详解】
解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是: .
故选C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
3、B
【分析】
根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体.
【详解】
解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,
∴m=4+3+2=9,n=4+2+1=7,
∴2m﹣n=2×9﹣7=11.
故选B.
【点睛】
本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数.
4、B
【分析】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【详解】
解:这个几何体的俯视图是 ,
故选:B.
【点睛】
本题考查了俯视图,熟记俯视图的定义(从物体的上面观察得到的视图)是解题关键.
5、C
【分析】
根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案.
【详解】
解:根据三视图知,组成该几何体的小正方体分布情况如下:
与之相对应的C选项,
故选:C.
【点睛】
本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.
6、A
【分析】
从左边看过去:可以看到上下两个宽度相同的长方形,从而可以得到左视图.
【详解】
解:从左边看过去:可以看到上下两个宽度相同的长方形,
所以一个圆柱体和一个长方体组成的几何体,其左视图是A选项中的图形,
故选A
【点睛】
本题考查的是三视图,掌握“三视图中的左视图”是解本题的关键,注意的是能看到的棱要以实线来体现,看不见的棱要以虚线来体现.
7、A
【分析】
根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.
【详解】
解:若去掉1号小正方体, 主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,
从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,
从左边看过去,看到的小正方形的个数与排列方式不变; 所以左视图不变,
所以A符合题意,B,C,D不符合题意;
故选:A.
【点睛】
本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.
8、B
【分析】
主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
【详解】
解:主视图和左视图相同,均有三列,小正方形的个数分别为1、2、1;
俯视图也有三列,但小正方形的个数为1、3、1.
故选:B.
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.
9、D
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中.
【详解】
解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,
故选:D
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.
10、C
【分析】
根据几何体的三视图解答.
【详解】
解:圆柱从正面看是长方形,故A选项不符合题意;
四棱柱从正面看是长方形,故B选项不符合题意;
圆锥从正面看是三角形,从左面看是三角形,故C选项符合题意;
三棱柱从正面看是长方形,故D选项不符合题意;
故选:C.
【点睛】
此题考查简单几何体的三视图,正确掌握各几何体的三视图及视角的位置是解题的关键.
二、填空题
1、5
【分析】
根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+3+3+2+2+1=14个小正方体,再根据正面看与上面看的图形,得到俯视图中的第1列只有一处为3层,其余为1层,分三种情况考虑:最底层为3层,中间为3层,上面为3层;第2列只有一处为2层,上面或下面;第3列为1层,最少需要1+1+3+1+2+1=9个小正方体.
【详解】
解:由题意可得:
最多需要14个小正方体,最少需要9个正方体,
相差14-9=5个,
故答案为:5.
【点睛】
本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
2、
【分析】
由三视图可知。这个立体图形是圆柱,因此根据圆柱的体积公式进行求解即可得到答案.
【详解】
解:由三视图可知。这个立体图形是圆柱,且底面圆的直径是2,圆柱的高为4
∴
故答案为:.
【点睛】
本题主要考查了立体图形的三视图和圆柱的体积计算,解题的关键在于根据三视图确定立体图形的形状.
3、12
【分析】
从俯视图中可以看出最底层碟子的个数及形状,从主视图可以看出碟子的层数和个数,从而算出总的个数.
【详解】
解:由三视图可得三摞碟子数从左往右分别为5,4,3,
则这个桌子上共有5+4+3=12个碟子.
故答案为:12.
【点睛】
本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出碟子的个数.
4、5
【分析】
画出最少时俯视图即可解决问题.
【详解】
解:观察主视图和左视图可知这个几何体的小正方体的个数最少时,俯视图如图所示.
2+1+2=5,
故答案为5.
【点睛】
本题考查了三视图.从正面看,所得到的图形是主视图;从左面看,所得到的图形是左视图;从上面看,所得到的图形是俯视图.
5、7, 10.
【分析】
易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.
【详解】
解:综合主视图和俯视图,这个几何体的底层有5个小正方体,
第二层最少有2个,最多有5个,
因此搭成这样的一个几何体至少需要小正方体木块的个数为:5+2=7个,
至多需要小正方体木块的个数为:5+5=10个,
故答案为:7,10.
【点睛】
此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
三、解答题
1、(1)见解析;(2)136cm2
【分析】
(1)直接利用三视图的观察角度分别从正面和左面得出视图即可;
(2)根据正方体的个数得出表面积;
【详解】
解:(1)如图所示:
(2),,
答:表面积为.
【点睛】
考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字,左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
2、见解析
【分析】
读图可得,主视图有3列,每列小正方形数目分别为2,1,1;左视图有1列,小正方形数目分别为2;俯视图有3行,每行小正方形数目分别为1,1,1.
【详解】
如图所示:
【点睛】
此题考查作图-三视图,解题关键在于掌握作图法则.
3、
(1)主
(2)见解析
(3)见解析
【分析】
(1)根据移开后的主视图和没有移开时的主视图一致即可求解;
(2)根据题意画出主视图即可;
(3)根据从左边起各列的小正方形数分别为2,3,1,画出左视图即可.
(1)
将正方体①移走后,新几何体与原几何体相比主视图没有变化,如图,
故答案为:主
(2)
图②的主视图如图,
(3)
图③的左视图如图,
【点睛】
本题考查了画三视图,根据立体图形得出三视图是解题的关键.
4、(1)6;(2)见解析;(3)5,7
【分析】
(1)根据图形知图形的层数及各层的块数,相加即得;
(2)根据三视图的画法解答;
(3)最少时只能将竖列的两个的最上一个去掉,最多时在两个的最上加一个.
【详解】
解:由图知,图形共有3层,最下层有3块小正方体,中间一层有2块,最上一层有1块,
∴图中共有1+2+3=6块小正方体,
故答案为:6;
(2)如图:
(3)如图,用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要5个,最多需要7个,
故答案为:5,7.
【点睛】
此题考查画小正方体构成的立体图形的三视图,数小正方体的个数,正确掌握立体图形的三视图的画法是解题的关键.
5、(1)画图见解析;(2)DE=3米
【分析】
(1)连接AC,过D点做AC平行线,交EB与点F,即可得投影EF.
(2)太阳光属于平行光源,故,故,所以DE=3.
【详解】
(1)如图所示:
(2)∵DE//AC
∴∠EFD=∠BCA
∴
∴
∴
∴DE=3米.
【点睛】
本题考查了平行投影以及相似三角形的判定和性质,在实际生活中,处处都存在相似三角形.当我们与其接触时,就能利用相似的相关知识去识别和解决实际生活中的问题,如同一时刻物高与影长的问题.
相关试卷
这是一份九年级下册第25章 投影与视图综合与测试课后测评,共18页。试卷主要包含了如图所示的几何体的左视图是等内容,欢迎下载使用。
这是一份初中第25章 投影与视图综合与测试习题,共20页。试卷主要包含了下面左侧几何体的主视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试练习题,共20页。试卷主要包含了如图所示的几何体的俯视图是,如图几何体的主视图是,如图所示的几何体的左视图为等内容,欢迎下载使用。