初中数学沪科版九年级下册第25章 投影与视图综合与测试课时训练
展开沪科版九年级数学下册第25章投影与视图重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示的几何体的主视图为( )
A. B. C. D.
2、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是( )
A.个 B.个 C.个 D.个
3、中国有悠久的金石文化,印信是金石文化的代表之一.南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印.它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体.从正面看该几何体得到的平面图形是( )
A. B. C. D.
4、7个小正方体按如图所示的方式摆放,则这个图形的左视图是( )
A. B.
C. D.
5、如图所示的工件中,该几何体的俯视图是( )
A. B. C. D.
6、下列几何体中,从正面看和从左面看形状均为三角形的是( )
A. B.
C. D.
7、下列立体图形的主视图是( )
A. B. C. D.
8、如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是( )
A. B.
C. D.
9、在平行投影下,矩形的投影不可能是( )
A. B. C. D.
10、如图所示的几何体,它的左视图是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示是某种型号的正六角螺母毛坯的三视图,则左视图的面积为_________.
2、由若干个相同的小正方体搭成的几何体的三视图相同,如图所示.至少再加_____个小正方体,该几何体可成为一个正方体.
3、如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____.
4、一个立体图形,从正面看到的形状是,从左面看到的形状图是.搭这样的立体图形,最少需要________个小正方体,最多可以有________个正方体.
5、一个圆柱体的三视图如图所示,根据图中数据计算圆柱的体积为___________.(答案含)
三、解答题(5小题,每小题10分,共计50分)
1、画出下列几何体的主视图、左视图与俯视图.
2、如图,是由一些大小相同的小正方体组合成的简单几何体.
(1)图中有_______块小正方体;
(2)该几何体从正面看所得到的平面图形如图所示,请你在下面方格纸中分别画出从左边看和从上边看它所得到的平面图形.
3、根据要求回答以下视图问题:
(1)如图①,它是由5个小正方体摆成的一个几何体,将正方体①移走后,新几何体与原几何体相比, 视图没有发生变化;
(2)如图②,请你在网格纸中画出该几何体的主视图(请用斜线阴影表示);
(3)如图③,它是由几个小正方体组成的几何体的俯视图,小正方形上的数字表示该位置上的正方体的个数,请在网格纸中画出该几何体的左视图(请用斜线阴影表示).
4、如图所示的几何体是由几个相同的小正方体排成3行组成的.
(1)填空:这个几何体由 个小正方体组成;
(2)画出该几何体的三个视图.(用阴影图形表示)
5、如图,这是一个由7个小立方体搭成的几何体,请你画出它的三视图.
-参考答案-
一、单选题
1、A
【分析】
根据主视图是从物体的正面看得到的视图即可求解.
【详解】
解:主视图如下
故选:A.
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提.
2、D
【分析】
从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
【详解】
解:综合主视图,俯视图,左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是6,
故选D.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
3、D
【分析】
找到从正面看所得到的图形即可.
【详解】
解:从正面看是一个正六边形,里面有2个矩形,
故选D.
【点睛】
本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.
4、C
【分析】
细心观察图中几何体摆放的位置,根据左视图是从左面看到的图象判定则可.
【详解】
解:从左边看,是左边3个正方形,右边一个正方形.
故选:C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
5、B
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个同心圆,外圆是实线,内圆是虚线,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图.
6、C
【分析】
根据几何体的三视图解答.
【详解】
解:圆柱从正面看是长方形,故A选项不符合题意;
四棱柱从正面看是长方形,故B选项不符合题意;
圆锥从正面看是三角形,从左面看是三角形,故C选项符合题意;
三棱柱从正面看是长方形,故D选项不符合题意;
故选:C.
【点睛】
此题考查简单几何体的三视图,正确掌握各几何体的三视图及视角的位置是解题的关键.
7、A
【分析】
主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.
【详解】
解:主视图是从正面所看到的图形,是:
故选:A
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
8、C
【分析】
根据几何体的结构特征及俯视图可直接进行排除选项.
【详解】
解:如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是;
故选C.
【点睛】
本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键.
9、A
【分析】
根据平行投影得出矩形的投影图形解答即可.
【详解】
在平行投影下,矩形的投影图形可能是线段、矩形、平行四边形,不可能是直角梯形,
故选A.
【点睛】
本题考查了平行投影,关键是根据平行投影得出矩形的投影图形.
10、C
【分析】
根据几何体的左面是一个圆环即可得左视图.
【详解】
由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线.
故选:C.
【点睛】
本题考查了三视图,根据所给几何体正确画出三视图是关键.
二、填空题
1、
【分析】
如图,连接过作于再求解 再确定左视图是长方形,两边分别为3cm,cm,从而可得答案.
【详解】
解:如图,连接过作于
由俯视图可得:
由主视图可得:正六角螺母毛坯的高为:3cm,
左视图的面积为
故答案为:
【点睛】
本题考查的是三视图,左视图的面积的计算,掌握“左视图是长方形”是解本题的关键.
2、4
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,依此可得有几个小正方体,再用8减去小正方体的个数即可求解.
【详解】
解:根据三视图可得第一层有3个正方体,第二层有1个正方体,共有4个小正方体,
8﹣4=4(个).
故至少再加4个小正方体,该几何体可成为一个正方体.
故答案为:4.
【点睛】
本题主要考查三视图,能够根据三视图想象出立体图是解题的关键.
3、故答案为:
【点睛】
本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
4.
【分析】
根据主视图是边长为10cm 的正方形,可知圆柱的高为10cm,底面的直径为10cm,据此即可求出侧面积.
【详解】
解:∵果罐的主视图是边长为10cm的正方形,为圆柱体,
∴圆柱体的底面直径和高为10cm,
∴侧面积为,
故答案为:.
【点睛】
本题主要考查的是立体图形中的展开图,并进行面积计算,掌握立体图形的展开形式是解题的关键.
4、6 10
【分析】
根据题中所给的正面的形状和左面的形状即可得.
【详解】
解:根据题中所给的正面的形状和左面的形状可知,最少需要6个,将小正方体横着摆5个,再在任意一个小正方体的后面放一个小正方体;最多需要10个,将小正方体横着摆5个,再在每一个小正方体的后面放一个小正方体;
故答案为:6,10.
【点睛】
本题考查了三视图,解题的关键是根据三视图得出立体图形.
5、24
【分析】
根据主视图确定出圆柱体的底面直径与高,根据圆柱体的体积公式列式计算即可.
【详解】
解:由图知,圆柱体的底面直径为4,高为6,
∴V圆柱=πr2h=π×22×6=24π.
故答案为24π.
【点睛】
本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的体积公式.根据主视图确定出圆柱体的底面直径与高是解题的关键.
三、解答题
1、见解析
【分析】
主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
【详解】
如图所示:主视图
左视图
俯视图
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.
2、(1)11;(2)见解析.
【分析】
(1)根据几何体的图形进行判断即可得到答案;
(2)根据几何体的左视图有2列,每一列的小正方形数目为2,2;俯视图有4列,每一列的小正方形的数目为2,2,1,1.
【详解】
(1)左边第一例,两层,前后两行,共4个正方体,左边第二列,两层,前后两行,共4个正方体,左边第三列两层,只有后行2个正方体,左边第四列,后行1个正方体,一共有4+4+2+1=11个,
故答案为:11;
(2)从左边看:分两行,每行各看到2个正方形,
从上面看:分为四列,前后两行,前行左边有2个正方形,后行4个正方形.
【点睛】
本题考查简单组合体的三视图,和立方体的个数,解此题的关键在于平时加强空间想象的能力.
3、
(1)主
(2)见解析
(3)见解析
【分析】
(1)根据移开后的主视图和没有移开时的主视图一致即可求解;
(2)根据题意画出主视图即可;
(3)根据从左边起各列的小正方形数分别为2,3,1,画出左视图即可.
(1)
将正方体①移走后,新几何体与原几何体相比主视图没有变化,如图,
故答案为:主
(2)
图②的主视图如图,
(3)
图③的左视图如图,
【点睛】
本题考查了画三视图,根据立体图形得出三视图是解题的关键.
4、(1)10;(2)见解析
【分析】
(1)数出小立方体的个数即可;
(2)根据三视图的画法画出主视图、左视图、俯视图.
【详解】
解:(1)根据几何体,在俯视图中标出:
个,
故答案为:10;
(2)三视图如图所示:
【点睛】
考查简单几何体的三视图的画法,解题的关键是掌握主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.画三视图时还要注意“长对正、宽相等、高平齐”.
5、图见解析
【分析】
从正面看,得到从左往右3列正方形的个数依次为3,2,1;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为2,1,1,依此画出图形即可.
【详解】
解:如下图所示,
【点睛】
此题考查三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.
2021学年第25章 投影与视图综合与测试达标测试: 这是一份2021学年第25章 投影与视图综合与测试达标测试,共20页。
初中数学沪科版九年级下册第25章 投影与视图综合与测试同步练习题: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步练习题,共19页。试卷主要包含了如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
初中数学沪科版九年级下册第25章 投影与视图综合与测试同步测试题: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步测试题,共21页。试卷主要包含了如图,几何体的左视图是,下列物体中,三视图都是圆的是,如图所示的几何体的俯视图是等内容,欢迎下载使用。