数学九年级下册第25章 投影与视图综合与测试随堂练习题
展开这是一份数学九年级下册第25章 投影与视图综合与测试随堂练习题,共20页。试卷主要包含了如图所示的几何体的左视图是,如图所示的几何体的俯视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,几何体的左视图是( )
A. B. C. D.
2、如图是下列哪个立体图形的主视图( )
A. B.
C. D.
3、如图是由5个完全相同的小正方体组成的立体图形,这个立体图形的主视图是( )
A. B.C. D.
4、如图所示的几何体的左视图是( )
A. B. C. D.
5、如图所示的几何体的俯视图是( )
A. B.
C. D.
6、如图所示的几何体的左视图是( )
A. B.
C. D.
7、如图所示的几何体的俯视图是( )
A. B. C. D.
8、如图所示的几何体的俯视图是( )
A. B.C. D.
9、如图,是空心圆柱体,其主视图是下列图中的( )
A. B. C. D.
10、如图,几何体的左视图是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在学校开展的手工制作比赛中,小明用纸板制作了一个圆锥模型,它的三视图如图所示,根据图中数据求出这个模型的侧面积为______.
2、一个圆柱体的三视图如图所示,根据图中数据计算圆柱的体积为___________.(答案含)
3、如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则搭成的几何体小立方体的个数最大是________.
4、由n个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n的最大值是________.
5、一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),这个零件的表面积是_______cm2.
三、解答题(5小题,每小题10分,共计50分)
1、用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.
(1)请你分别画出从正面和从左面看到的这个几何体的形状图;
(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要_______个小立方块;
(3)①图中的几何体的表面积(包括与桌面接触的部分)为_______;
②若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为_______,_______.
2、如图是由7个棱长为1的小正方体搭成的几何体.
(1)请分别画出这个几何体的主视图、左视图和俯视图;
(2)这个几何体的表面积为 (包括底面积);
(3)若使得该几何体的俯视图和左视图不变,则最多还可以放 个相同的小正方体.
3、作图题:如图,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.请在方格中分别画出几何体的主视图、左视图.
4、如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竿AB的长为3m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2m.
(1)请你在图中画出此时旗杆DE在阳光下的投影;
(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6m,请你计算旗杆DE的高度.
5、如图是用10块完全相同的小正方体搭成的几何体.
(1)请在方格中画出它的三个视图;
(2)如果只看三视图,这个几何体还有可能是用_________块小正方体搭成的.
-参考答案-
一、单选题
1、C
【分析】
找到从左面看所得到的图形,比较即可.
【详解】
解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是: .
故选C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
2、B
【分析】
根据主视图即从物体正面观察所得的视图求解即可.
【详解】
解:
的主视图为,
故选:B.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
3、B
【分析】
从正面看到的平面图形是主视图,根据主视图的含义逐一判断即可.
【详解】
解:从正面可以看到2行3列的小正方形图形,第1行1个正方形,第2行3个正方形,按1,2,1的方式排列,
所以主视图是B,
故选B
【点睛】
本题考查的是三视图,掌握识别主视图是解本题的关键,注意的是能看到的棱都要画成实线,看不到的棱画成虚线.
4、D
【分析】
根据左视图的定义即可得.
【详解】
解:左视图是指从左面观察几何体所得到的视图,
这个几何体的左视图是,
故选:D.
【点睛】
本题考查了左视图,熟记定义是解题关键.
5、B
【分析】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【详解】
解:这个几何体的俯视图是 ,
故选:B.
【点睛】
本题考查了俯视图,熟记俯视图的定义(从物体的上面观察得到的视图)是解题关键.
6、B
【分析】
根据左视图是从左面看到的图形判定则可.
【详解】
解:从左边看,是一个正方形,正方形的右上角有一条虚线.
故选:B.
【点睛】
本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.
7、D
【分析】
根据从上面看得到的图形是俯视图,可得答案.
【详解】
从上面看得到的图形是
故选D
【点睛】
本题考查了三视图的知识,掌握从上边看得到的图形是俯视图是关键.
8、C
【分析】
根据几何体的俯视图即为从几何体的上面看到的形状,判断即可.
【详解】
解:从上面看该几何体,所看到的图形如下:
故选:C.
【点睛】
本题考查简单组合体的三视图,理解视图的意义,解题的关键是:掌握俯视图的画法是正确判断的前提.
9、C
【分析】
从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.
【详解】
主视图是在几何体正面面观察物体得到的图形.能够看见的部分用实线表示,不能看见的部分用虚线表示.
本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线.
故选:C
【点睛】
本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形.
10、D
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
根据左视图的定义可知,这个几何体的左视图是选项D,
故选:D.
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义.
二、填空题
1、
【分析】
从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为,高为4,进而求得母线长,据此求得圆锥的侧面积.
【详解】
从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,
由三视图可知圆锥的底面半径为,
高为,则母线长为,
所以这个模型的侧面积为.
故答案为.
【点睛】
本题考查了根据三视图确定几何体,求圆锥的侧面,牢记公式是解题的关键.
2、24
【分析】
根据主视图确定出圆柱体的底面直径与高,根据圆柱体的体积公式列式计算即可.
【详解】
解:由图知,圆柱体的底面直径为4,高为6,
∴V圆柱=πr2h=π×22×6=24π.
故答案为24π.
【点睛】
本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的体积公式.根据主视图确定出圆柱体的底面直径与高是解题的关键.
3、7
【分析】
根据俯视图和左视图确定每层的立方体的个数,即可求解.
【详解】
解:由俯视图易得最底层有4个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,
那么小立方体的个数可能是5个或6个或7个.
故答案为:7
【点睛】
此题考查了几何体的三视图,解题的关键是根据几何体的三视图确定各层的立方体的个数.
4、13
【分析】
根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.
【详解】
综合主视图和俯视图,从上往下数,底面最多有 2+2+3=7 个,第二层最多有1+1+2=4 个,第三层最多有1+0+1=2 个,则n的最大值是 7+4+2=13
故答案为:13.
【点睛】
本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.
5、200π
【分析】
根据三视图可得这个零件是圆柱体,根据表面积等于侧面积+上下两个底面的面积,可得答案.
【详解】
解:由三视图可得这个零件是圆柱体,
表面积是:π×52×2+15×π×10=200π(cm2),
故答案为:200π.
【点睛】
此题主要考查三视图的应用,解题的关键是根据图形特点得到这个零件是圆柱体.
三、解答题
1、(1)见解析;(2)12;(3)①1400;②1250,1550.
【分析】
(1)根据三视图可画出几何体的形状图;
(2)根据正方体的性质,每行每列的小正方体都相等,都是3个,这样正方体的小正方体的个数应该为27个,现在已有15个,这样再补12个即可;
(3)①从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最小时,每个位置数量尽量相等,可见解析中图,按图计算即可;②从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最大时,每个位置数量尽量相差最大,可见解析中图,按图计算即可.
【详解】
解:(1)由已知可得:
(2)根据正方体的性质,每行每列都是3个小正方体,
已知有(个)
∴(个),
故答案为:12;
(3)①∵小正方体的棱长为5cm,
∴小正方形的面积为,
∴几何体表面积为,
故答案为:;
②如图搭建此时表面积为最小,
几何体最小表面积为;
如图搭建此时表面积为最大,
几何体最大表面积为;
故答案为:,.
【点睛】
本题考查了几何体的三视图,根据三视图计数,计算表面积,根据小正方体的数量计算表面积是本题的难点,了解什么情况表面积最小,什么情况表面积最大是解题关键.
2、(1)见解析;(2)30;(3)3
【分析】
(1)根据三视图的画法画出相应的图形即可;
(2)三视图面积的2倍加被挡住的面积即可;
(3)根据俯视图和左视图的特点即可求解.
【详解】
(1)这个几何体的主视图、左视图和俯视图如下:
(2)(6+4+4)×2+2=30,
故答案为:30;
(3)保持这个几何体的俯视图和左视图不变,可往第一列和第二列分别添加1个、2个小正方体,
故答案为:3.
【点睛】
此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键.
3、见解析
【分析】
由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;据此可画出图形.
【详解】
解:如图所示:
【点睛】
本题考查简单组合体的三视图,理解视图的意义是解决问题的关键.
4、(1)见详解;(2)旗杆DE的高度为9m.
【分析】
(1)连接AC,然后根据投影相关知识可进行作图;
(2)由(1)可知∠ACB=∠DFE,然后易得△ABC∽△DEF,进而根据相似三角形的性质可求解.
【详解】
解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影,如图所示:
(2)∵DF∥AC,
∴∠ACB=∠DFE,
∵∠ABC=∠DEF=90°,
∴△ABC∽△DEF,
∴,
∵AB=3m,BC=2m,EF=6m,
∴,
∴DE=9m;
答:旗杆DE的高度为9m.
【点睛】
本题主要考查相似三角形的性质与判定及投影,熟练掌握相似三角形的性质与判定及投影是解题的关键.
5、(1)见解析;(2)9或11
【分析】
(1)根据三视图的定义画图即可;
(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,由此即可得到答案.
【详解】
(1)画出的三视图如图所示:
(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,
∴这个几何体还可以由9个或11个小正方体组成.
【点睛】
本题主要考查了画小立方体组成的几何体的三视图,由三视图求小立方体个数,解题的关键在于能够正确观察图形求解.
相关试卷
这是一份2021学年第25章 投影与视图综合与测试达标测试,共20页。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步练习题,共19页。试卷主要包含了如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步测试题,共21页。试卷主要包含了如图,几何体的左视图是,下列物体中,三视图都是圆的是,如图所示的几何体的俯视图是等内容,欢迎下载使用。