初中数学沪科版九年级下册第25章 投影与视图综合与测试课时练习
展开沪科版九年级数学下册第25章投影与视图定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图几何体的主视图是( )
A. B. C. D.
2、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为( )
A.6 B.7 C.10 D.1
3、下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( )
A. B.
C. D.
4、如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是( )
A. B.
C. D.
5、如图,一个水晶球摆件,它是由一个长方体和一个球体组成的几何体,则其主视图是( )
A. B. C. D.
6、如图是下列哪个立体图形的主视图( )
A. B.
C. D.
7、全运会颁奖台如图所示,它的主视图是( )
A. B. C. D.
8、如图所示的支架(一种小零件)的两个台阶的高度相等,则它的左视图为( )
A. B.
C. D.
9、下列四个几何体中,主视图与俯视图不同的几何体是( )
A. B.
C. D.
10、如图,将一个装了一半水的密闭圆柱形玻璃杯水平放置时,水面的形状是( )
A.圆 B.梯形 C.长方形 D.椭圆
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、由8个相同的小正方体组成的几何体如图1所示,拿掉______个小正方体后的几何体的主视图和左视图都是图2所示图形.
2、用小立方块搭一几何体,它的主视图和俯视图如图所示,这个几何体最少要_____个立方块,最多要______个立方块.
3、长方体的长为,宽为,高为,点离点,一只蚂蚁如果要沿着长方体的表面从点爬到点去吃一滴蜜糖,需要爬行的最短距离是_________.
4、某立体图形的三视图中,主视图是矩形,请写出一个符合题意的立体图形名称:_________.
5、根据三视图,这个几何体的侧面积是 ___.
三、解答题(5小题,每小题10分,共计50分)
1、如图是由几个相同的小立方块所搭几何体的俯视图(从上面往下观察几何体所看到的形状),小正方形中的数字表示在该位置小立方块的个数.
请解答下列问题:
(1)从正面、左面观察该几何体,分别画出你所看到的图形;
(2)若小立方块的棱长为2,则从正面观察该几何体时,你所看到的形状的面积是 .
2、(1)请在网格中画出如图所示的几何体的主视图、左视图、俯视图;
(2)已知每个小正方体的棱长为1,求该几何体的表面积.
3、请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.
4、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.
5、小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是在下午拍摄的?
-参考答案-
一、单选题
1、A
【分析】
根据题意可得:从正面看,主视图是两个长方形,即可求解.
【详解】
解:从正面看,主视图是两个长方形.
故选:A
【点睛】
本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键.
2、C
【分析】
从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.
【详解】
解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.
由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.
因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.
故选:C.
【点睛】
题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.
3、C
【分析】
根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.
【详解】
解:、主视图、俯视图都是正方形,故不符合题意;
、主视图、俯视图都是矩形,故不符合题意;
、主视图是三角形、俯视图是圆形,故符合题意;
、主视图、俯视图都是圆,故不符合题意;
故选:C.
【点睛】
本题考查了简单组合体的三视图,解题的关键是掌握从正面看得到的图形是主视图,从上面看得到的图形是俯视图.
4、C
【分析】
根据几何体的结构特征及俯视图可直接进行排除选项.
【详解】
解:如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是;
故选C.
【点睛】
本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键.
5、D
【分析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
解:从正面看下边是一个矩形,矩形的上边是一个圆,
故选:D.
【点睛】
本题考查了简单组合体的三视图,掌握从正面看得到的图形是主视图是解决此题关键.
6、B
【分析】
根据主视图即从物体正面观察所得的视图求解即可.
【详解】
解:
的主视图为,
故选:B.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
7、C
【分析】
主视图是从前面先后看得到的图形,根据主视图对各选项一一分析即可.
【详解】
解:主视图是从前面先后看得到的图形,是C.
故选C.
【点睛】
本题考查主视图,掌握三视图的特征是解题关键.
8、C
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱用实线表示,看不见的棱用虚线表示.
【详解】
解:从左面看去,是两个有公共边的矩形,如图所示:
故选:C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.
9、C
【分析】
正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.
【详解】
解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;
B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;
C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;
D、球体的主视图与俯视图都是圆形,故不符合题意.
故选:C.
【点睛】
本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.
10、C
【分析】
根据水平面与圆柱的底面垂直,可得从上面看,水面的形状为长方形,即可求解.
【详解】
解:∵水平面与圆柱的底面垂直,
∴从上面看,水面的形状为长方形.
故选:C
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从前面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
二、填空题
1、3、4、5
【分析】
拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层最少必须有2个小立方块,上面一层必须保留1个立方块,即可知可以拿掉小立方块的个数.
【详解】
根据题意,拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,
所以最底下一层最少必须有2个小立方块,上面一层必须保留1个立方块,如图,
故答案为:3,4、5.
【点睛】
本题考查了由三视图判断几何体,几何体的三种视图,掌握定义是关键.解决此类图的关键是由立体图形得到三视图,学生由于空间想象能力不够,易造成错误.
2、
【分析】
依据主视图可得俯视图中各位置小正方体的个数,进而得到这个几何体中正方体最少和最多的个数.
【详解】
由主视图可得,这个几何体(第2列,第3列组合不唯一)最少要1+3+4=8个立方块;
由主视图可得,这个几何体最多要1+4+6=11个立方块;
故答案为:8,11.
【点睛】
本题主要考查三视图判断几何体,解题时应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
3、25cm
【分析】
要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
【详解】
解:只要将长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:
∵长方体的宽为10,高为20,点B与点C的距离是5,
∴BD=CD+BC=10+5=15,AD=20,
在直角三角形ABD中,根据勾股定理得:AB==25;
只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴BD=CD+BC=20+5=25,AD=10,
在直角三角形ABD中,根据勾股定理得:AB=;
只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴AC=CD+AD=20+10=30,
在直角三角形ABC中,根据勾股定理得:AB=;
∵
∴蚂蚁爬行的最短距离是25cm,
故答案为:25cm.
【点睛】
此题考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可,正确掌握勾股定理及长方体的不同展开方式是解题的关键.
4、圆柱
【分析】
根据三视图的定义求解即可.
【详解】
解:圆柱的主视图是矩形,
故答案为:圆柱.
【点睛】
本题考查三视图,解题的关键是掌握三视图的定义.
5、200π
【分析】
根据三视图确定几何体为圆柱,侧面积为2πrh,结合主视图确定h,结合俯视图确定底面圆的直径,计算即可.
【详解】
∵,
∴几何体为圆柱,且圆柱的高为h=20,底面圆的直径为10,
∴侧面积为2πrh=10×20×π=200π.
故答案为:200π.
【点睛】
本题考查了几何体的三视图,结合体侧面积计算,熟练掌握常见几何体的三视图及其侧面积计算公式是解题的关键.
三、解答题
1、(1)见解析;(2)16
【分析】
(1)根据俯视图的信息,以及左视图和主视图的定义画图即可;
(2)在(1)的基础之上求解即可.
【详解】
解:(1)由俯视图可知,该组合体的主视图有3列,第1列有一个正方形,第2列有2个正方形,第3列有1个正方形;左视图有2列,第1列有2个正方形,第2列有2个正方形,如图所示:
(2)由主视图可知,共有4个相同的正方形组成,
∴,
故答案为:16.
【点睛】
本题考查画简单组合体的三视图,理解三视图的定义,灵活运用空间想象能力是解题关键.
2、(1)见解析;(2)26cm2.
【分析】
(1)根据三视图的画法画出相应的图形即可;
(2)根据三视图的面积求出几何体的表面积即可.
【详解】
解:(1)三视图如下
(2)该几何体的表面积为
【点睛】
本题考查简单几何体的三视图,熟练掌握三简单几何体的三视图的特点是解答的关键.
3、作图见解析
【分析】
主视图:从正面看到的平面图形,左视图:从左边看到的平面图形,俯视图:从上面看到的平面图形,根据三种视图的定义,再根据看到的平面图形作图即可.
【详解】
解:从正面可以看到5个正方形,分3列,依次为3个,1个,1个,
所以从正面看的主视图为:
从左面可以看到4个正方形,分2列,依次为3个,1个,
所以从左面看的左视图为:
从上面可以看到4个正方形,分3列,依次为1个,2个,1个,
所以从上面看的俯视图为:
【点睛】
本题考查的是作简单组合体的三视图,掌握“主视图,左视图,俯视图的含义”是解题的关键.
4、见解析
【分析】
根据三视图的画法,直接画出主视图、左视图和俯视图即可.
【详解】
解:如图所示:
【点睛】
本题考查三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.
5、右边一幅照片是下午拍摄的
【分析】
根据人和影子的位置,结合投影的概念,分别判断即可得到正确答案.
【详解】
右边一幅照片是下午拍摄的.因为天安门坐北朝南,由人影在人身后偏右,推知太阳在西南方向,此时是下午时间.
【点睛】
本题考查投影的概念,能够结合物体和影子的位置进行准确判断是解此类题的关键.
数学沪科版第25章 投影与视图综合与测试一课一练: 这是一份数学沪科版第25章 投影与视图综合与测试一课一练,共22页。试卷主要包含了如图,身高1.5米的小明.,如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
初中数学沪科版九年级下册第25章 投影与视图综合与测试课堂检测: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课堂检测,共19页。试卷主要包含了图中几何体的左视图是,如图所示的几何体的主视图是等内容,欢迎下载使用。
初中沪科版第25章 投影与视图综合与测试课后复习题: 这是一份初中沪科版第25章 投影与视图综合与测试课后复习题,共18页。试卷主要包含了下面左侧几何体的主视图是,下面图形是某几何体的三视图,如图所示,该几何体的俯视图是,下列立体图形的主视图是等内容,欢迎下载使用。