初中数学沪科版九年级下册第25章 投影与视图综合与测试课时作业
展开
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课时作业,共19页。试卷主要包含了如图所示的支架等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,这个几何体是将一个正方体中间挖出一个圆柱体后的剩余部分,该几何体的主视图是( )A. B. C. D.2、如图,由5个完全一样的小正方体组成的几何体的左视图是( )A. B. C. D.3、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为( )A.6 B.7 C.10 D.14、如图所示的支架(一种小零件)的两个台阶的高度相等,则它的左视图为( )A. B.C. D.5、如图,图形从三个方向看形状一样的是( )A. B. C. D.6、下列几何体中,其三视图完全相同的是( )A. B.C. D.7、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )A.6 B.7 C.8 D.98、如图是一个几何体的实物图,则其主视图是( )A. B. C. D.9、如图是由5个相同的小正方体搭成的几何体,它的左视图是( ).A. B. C. D.10、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从正面和左面看一个长方体得到的形状图如图所示(单位:),则其从上面看到的形状图的面积为__________.2、如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为_________厘米.3、如图是一个几何体的三视图,则这个几何体的表面积为__.4、如图是由五个棱长均为1的正方体搭成的几何体,则它的左视图的面积为________.5、将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为_____.三、解答题(5小题,每小题10分,共计50分)1、下面是由一些棱长为a厘米的正方体小木块搭建成的几何体的主视图、左视图和俯视图.(1)该几何体是由 块小木块组成的;(2)求出该几何体的体积;(3)求出该几何体的表面积(包含底面).2、一个几何体的三种视图如图所示,(1)这个几何体的名称是______,其侧面积为______;(2)在右面方格图中画出它的一种表面展开图;(3)求出左视图中AB的长.3、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.4、(1)请在网格中画出如图所示的几何体的主视图、左视图、俯视图;(2)已知每个小正方体的棱长为1,求该几何体的表面积.5、如图1,是一个长方体截成的几何体,请在网格中依次画出这个几何体的三视图. -参考答案-一、单选题1、A【分析】根据主视图的概念求解即可.【详解】解:由题意可得,该几何体的主视图是:.故选:A.【点睛】此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念.2、B【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从从左边看有2列两层,2列从左到右分别有2、1个小正方形,故选:B.【点睛】本题考查了简单组合体的三视图,解题的关键是从左边看得到的图形是左视图.3、C【分析】从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.【详解】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.故选:C.【点睛】题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.4、C【分析】找到从左面看所得到的图形即可,注意所有的看到的棱用实线表示,看不见的棱用虚线表示.【详解】解:从左面看去,是两个有公共边的矩形,如图所示:故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.5、C【分析】根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;C.从三个方向看形状一样,都是圆形,故本选项符合题意;D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.故选:C.【点睛】本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.6、A【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、四棱锥的俯视图与主视图和左视图不同,错误;D、圆锥的俯视图与主视图和左视图不同,错误;故选A.【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.7、B【分析】根据几何体的三视图特点解答即可.【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,∴该几何体最少有4+2+1=7个小正方体组成,故选:B.【点睛】本题考查几何体的三视图,掌握三视图的特点是解答的关键.8、C【分析】找到从正面看所得到的图形即可.【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.9、B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,第一层有2个正方形,第二层左侧有1个正方形.故选:B.【点睛】本题考查了三视图的知识,熟知左视图是从物体的左面看得到的视图是解答本题的关键.10、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题1、6【分析】从正面看,左面看,得到长方体的高为4,长为3,得到从上面看的矩形长为3;左边看,从上面看,宽相等,得到从上面看的矩形宽为2,计算即可.【详解】根据正面,左面高平齐,正面,上面长对正,左面,上面宽相等,得到从上面看的矩形长为3,宽为2故从上面看到的形状图的面积为6,故答案为:6.【点睛】本题考查了从不同方向看,熟练掌握三视图的特点与联系是解题的关键.2、【分析】由正视图可知,高是20cm,两顶点之间的最大距离为60cm,利用正六边形的性质求得底面AD,然后所有棱长相加即可.【详解】根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边,因为正六边形的直径为60cm,则AC=60÷2=30(cm),∠ACD=120°,作CB⊥AD于点B,那么AB=AC×sin60°=30×=15(cm),所以AD=2AB=30(cm),胶带的长至少=(cm).故答案为:.【点睛】本题考查了正六边形的性质、立体图形的三视图和学生的空间想象能力;注意知道正六边形两个顶点间的最大距离求对边之间的距离需构造直角三角形利用相应的三角函数求解.3、4π【分析】先判定这个几何体是圆锥,再根据圆锥的特点求出其表面积.【详解】解:根据三视图可得这个几何体是圆锥,底面积=π×12=π,侧面积为==3π,则这个几何体的表面积=π+3π=4π;故答案为:4π.【点睛】此题主要考查圆锥的表面积,解题的关键是根据三视图的得到几何体是圆锥.4、3【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看,底层是两个小正方形,上层的右边是一个小正方形,因为每个小正方形的面积为1,所以则它的左视图的面积为3.故答案为:3.【点睛】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.5、4【分析】据从上面看得到的图形是俯视图,直接观察,可得答案.【详解】解:从上面看,底层是两个小正方形,上层是两个小正方形,如图所示,所以该几何体的俯视图的面积为4.故答案为:4.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图是解题关键.三、解答题1、(1)10;(2)10a3 cm3;(3)40a2 cm2.【分析】(1)根据三视图的定义解决问题即可;(2)求出10个小正方体的体积和即可;(3)还原出立体图形,进而求出各个面的面积进行加总求和.【详解】解答:解:(1)几何体的小正方形的个数如俯视图所示,2=1+3+1+1+2=10.故答案为:10.(2)V=10a3(cm3)∴该几何体的体积为10a3cm3.(3)S=2(6a2+6a2+6a2)+2(a2+a2)=40a2(cm2).∴该几何体的表面积40a2cm2.【点睛】本题主要是考查了立体图形的三视图以及体积、表面积的求解,通过三视图还原得到原立体图形,需要一定的空间想象能力,另外表面积的求解,不要漏掉一些面.2、(1)正三棱柱,72;(2)画图见解析;(3)【分析】(1)由三视图所表现特征可知几何体为正三棱柱,正三棱柱侧面积为三个矩形,则侧面积为.(2)如图所示,答案不唯一.(3)中过E点作FG垂线,垂足为H,可求得FH=2,再由勾股定理即可求得FH=.【详解】(1)该几何体由主视图和左视图可判断为棱柱,由俯视图可判断为正三棱柱(2)如图所示(3)如图所示,中过E点作FG垂线,垂足为H∵为等边三角形∴FH=2,∠EHF=∠EHG=90°∴【点睛】本题考查了三视图以及勾股定理,三视图是从正面、左面、上面以平行视线观察物体所得的图形,判断三视图时应结合实物,变换角度去观察,结合空间想象能力,由三视图求几何体的侧面积或表面积时,首先要根据三视图描述几何体,再根据三视图“长对正、高平齐、宽相等”的关系和轮廓线的位置确定各个面的尺寸,然后求表面积或侧面积.3、见解析【分析】利用三视图的画法画出图形即可.【详解】根据三视图的画法,画出相应的图形如下:【点睛】本题考查简单组合体的三视图,理解三视图的意义是正确解答问题的关键.4、(1)见解析;(2)26cm2.【分析】(1)根据三视图的画法画出相应的图形即可;(2)根据三视图的面积求出几何体的表面积即可.【详解】解:(1)三视图如下(2)该几何体的表面积为【点睛】本题考查简单几何体的三视图,熟练掌握三简单几何体的三视图的特点是解答的关键.5、见解析【分析】根据三视图的定义,作出图形即可.【详解】解:三视图,如图所示.【点睛】本题考查作图﹣三视图,解题的关键是理解三视图的定义,属于中考常考题型.
相关试卷
这是一份九年级下册第24章 圆综合与测试习题,共27页。
这是一份沪科版九年级下册第25章 投影与视图综合与测试一课一练,共18页。试卷主要包含了下列立体图形的主视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试随堂练习题,共20页。试卷主要包含了如图所示的几何体的俯视图是,如图所示的几何体左视图是等内容,欢迎下载使用。