初中数学沪科版九年级下册第25章 投影与视图综合与测试课时训练
展开这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课时训练,共19页。试卷主要包含了如图几何体的主视图是,如图,该几何体的俯视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示的几何体的俯视图是( )
A. B. C. D.
2、如图所示,沿正方体相邻的三条棱的中点截掉一个角,则它的左视图是( )
A. B.
C. D.
3、如图所示的几何体的俯视图是( )
A. B.C. D.
4、如图几何体的主视图是( )
A. B. C. D.
5、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.
A.2 B.4 C.6 D.8
6、下列几何体的主视图和俯视图完全相同的是( )
A. B. C. D.
7、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是( )
A. B.
C. D.
8、如图,该几何体的俯视图是( )
A. B.
C. D.
9、如图是由4个相同的正方体组成的立体图形,它的左视图是( )
A. B. C. D.
10、下列几何体中,俯视图为三角形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,小亮从一盏9米高的路灯下处向前走了米到达点处时,发现自己在地面上的影子CE是米,则小亮的身高DC为____________米.
2、如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____.
3、从正面和左面看一个长方体得到的形状图如图所示(单位:),则其从上面看到的形状图的面积为__________.
4、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留).
从正面看 从左面看 从上面看
5、如图是某几何体的三视图.已知主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,若矩形的长为3,宽为2,则这个几何体的体积为_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图是由块积木搭成的几何体,这几块积木都是相同的正方体请画出从正面、左面、上面看到的这个几何体的形状图.
2、画出下列几何体的主视图、左视图与俯视图.
3、如图是用10块完全相同的小正方体搭成的几何体.
(1)请在空白的方格中分别画出从正面、从左面、从上面看到的所搭几何体的形状图;
(2)若保持从正面和从上面看到的形状图不变,最多还可以再搭 块小正方体.
4、如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示.
(1)请你通过画图确定灯泡所在的位置.
(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
5、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.
-参考答案-
一、单选题
1、D
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:结合所给几何体,其俯视图应为一个正方形,然后在正方形内部的左下角还有一个小长方形,
故选D.
【点睛】
本题主要考查了简单几何体的三视图,熟知三视图的定义是解题的关键.
2、C
【分析】
根据从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,由此求解即可
【详解】
解:由题意得:从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,
故选C.
【点睛】
本题主要考查了几何体的三视图,解题的关键在于能够熟练掌握三视图的定义.
3、C
【分析】
根据几何体的俯视图即为从几何体的上面看到的形状,判断即可.
【详解】
解:从上面看该几何体,所看到的图形如下:
故选:C.
【点睛】
本题考查简单组合体的三视图,理解视图的意义,解题的关键是:掌握俯视图的画法是正确判断的前提.
4、A
【分析】
根据题意可得:从正面看,主视图是两个长方形,即可求解.
【详解】
解:从正面看,主视图是两个长方形.
故选:A
【点睛】
本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键.
5、B
【分析】
根据题意,画出示意图,易得:△EDC∽△FDC,进而可得,即DC2=ED•FD,代入数据可得答案.
【详解】
解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=8m;
∵∠E+∠F=90°,∠E+∠ECD=90°,
∴∠ECD=∠F,
∴△EDC∽△FDC,
∴,即DC2=ED•FD=2×8=16,
解得CD=4m.
故选:B.
【点睛】
本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键.
6、D
【分析】
根据主视图和俯视图是分别从物体正面和上面看到的图形,逐项分析即可.
【详解】
解:A、圆柱主视图是矩形,俯视图是圆,故A选项不合题意;
B、圆锥的主视图是等腰三角形,俯视图是圆以及中心有一个点,故B选项不合题意;
C、三棱柱主视图是一行两个矩形且公共边是虚线,俯视图是三角形,故C选项不合题意;
D、圆的主视图和俯视图都为圆,故D选项符合题意;
故选D.
【点睛】
本题考查简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,俯视图是从物体的上面看得到的视图.
7、C
【分析】
左视图是从左边看得到的视图,结合选项即可得出答案.
【详解】
解:A是俯视图,B、D不是该几何体的三视图,C是左视图.
故选:C.
【点睛】
本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
8、A
【分析】
俯视图,从上面看到的平面图形,根据定义可得答案.
【详解】
解:从上面看这个几何体看到的是三个长方形,
所以俯视图是:
故选A
【点睛】
本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.
9、A
【分析】
从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.
【详解】
从左面看所得到的图形为A选项中的图形.
故选A
【点睛】
本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
10、D
【分析】
从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.
【详解】
从上方朝下看只有D选项为三角形.
故选:D.
【点睛】
本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.
二、填空题
1、1.8
【分析】
同一时刻下物体高度的比等于影长的比,构造相似三角形计算即可.
【详解】
如图,由题意知米,米,米,且,
∴米,
∵,
∴
又∵
∴,
∴,即,
解得(米),即小亮的身高为1.8米;
故答案为:1.8.
【点睛】
本题考查平行投影的相关知识点,能够根据题意构造相似是解题关键点.
2、故答案为:
【点睛】
本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
4.
【分析】
根据主视图是边长为10cm 的正方形,可知圆柱的高为10cm,底面的直径为10cm,据此即可求出侧面积.
【详解】
解:∵果罐的主视图是边长为10cm的正方形,为圆柱体,
∴圆柱体的底面直径和高为10cm,
∴侧面积为,
故答案为:.
【点睛】
本题主要考查的是立体图形中的展开图,并进行面积计算,掌握立体图形的展开形式是解题的关键.
3、6
【分析】
从正面看,左面看,得到长方体的高为4,长为3,得到从上面看的矩形长为3;左边看,从上面看,宽相等,得到从上面看的矩形宽为2,计算即可.
【详解】
根据正面,左面高平齐,正面,上面长对正,左面,上面宽相等,得到从上面看的矩形长为3,宽为2
故从上面看到的形状图的面积为6,
故答案为:6.
【点睛】
本题考查了从不同方向看,熟练掌握三视图的特点与联系是解题的关键.
4、
【分析】
根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.
【详解】
解:由图可知,圆柱体的底面直径为2,高为3,
所以,侧面积.
故答案为:.
【点睛】
本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高.
5、
【分析】
根据三视图可知这个几何题为圆柱体,进而根据圆柱体的体积等于底面积乘以高即可求得
【详解】
主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,
这个几何题为圆柱体,
这个圆柱体体积为
故答案为:
【点睛】
本题考查了根据三视图还原几何体,掌握基本几何体的三视图是解题的关键.
三、解答题
1、见解析
【分析】
从正面看从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右2列正方形的个数依次为2,1;依此画出图形即可.
【详解】
解:如图所示.
【点睛】
本题考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.
2、见解析
【分析】
主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
【详解】
如图所示:主视图
左视图
俯视图
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.
3、(1)见解析;(2)3
【分析】
(1)根据三视图的画法分别画出从正面、左面、上面看该组合体所看到的图形即可;
(2)可在最左侧前端放两个后面再放一个即可得出答案.
【详解】
解:(1)该组合体的三视图如图所示:
(2)在俯视图的相应位置最多添加相应数量的正方体,
如图所示:
∴最多还可以再搭3块小正方体.
【点睛】
本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键.
4、(1)见解析;(2)
【分析】
(1)连接CB延长CB交DE于O,点O即为所求;
(2)根据=,构建方程,可得结论.
【详解】
(1)解:如图,点O为灯泡所在的位置,
线段FH为小亮在灯光下形成的影子;
(2)解:由已知可得,
=,
∴=,
∴OD=4m.
∴灯泡的高为4m.
【点睛】
本题考查了中心投影,相似三角形的性质与判定,掌握中心投影是解题的关键.
5、见解析
【分析】
利用三视图的画法画出图形即可.
【详解】
根据三视图的画法,画出相应的图形如下:
【点睛】
本题考查简单组合体的三视图,理解三视图的意义是正确解答问题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试练习题,共20页。试卷主要包含了如图所示的几何体,它的左视图是,如图所示的几何体的左视图是,如图,该几何体的主视图是,下列立体图形的主视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试当堂检测题,共19页。试卷主要包含了图1,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课时练习,共19页。试卷主要包含了如图所示的几何体,它的左视图是,下列物体中,三视图都是圆的是等内容,欢迎下载使用。