数学第25章 投影与视图综合与测试同步训练题
展开
这是一份数学第25章 投影与视图综合与测试同步训练题,共20页。试卷主要包含了如图是下列哪个立体图形的主视图,如图,该几何体的俯视图是,如图所示的几何体的主视图是,如图,该几何体的主视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用( )个小正方体A.12 B.11 C.10 D.92、如图,图形从三个方向看形状一样的是( )A. B. C. D.3、图中几何体的左视图是( )A. B.C. D.4、如图是由6个完全相同的小正方体组成的立体图形,这个立体图形的三视图中( )A.主视图和俯视图相同 B.主视图和左视图相同C.俯视图和俯视图相同 D.三个视图都相同5、如图是下列哪个立体图形的主视图( )A. B.C. D.6、如图,该几何体的俯视图是( )A. B.C. D.7、下列几何体中,俯视图为三角形的是( )A. B. C. D.8、如图所示的几何体的主视图是( )A. B. C. D.9、如图,该几何体的主视图是( )A. B. C. D.10、如图所示的几何体的俯视图是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是从正面、左面、上面看到的几何体的形状图,根据图中所示数据求得这个几何体的全面积是________2、如图所示是某种型号的正六角螺母毛坯的三视图,则左视图的面积为_________. 3、一个几何体由一些大小相同的小正方体组成,如图写出是它的主视图和左视图,那么组成该几何体所需小正方体的个数最多为____4、如图,是一个直棱柱的三视图,这个直棱柱的表面积是_____.5、一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为____________.三、解答题(5小题,每小题10分,共计50分)1、如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置,(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为 .(2)请你在图中画出小亮站立AB处的影子.2、如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,问最多可以取走几个小立方块.3、如图,是由7个棱长都为1的小正方体组合成的简单几何体,请分别画出从正面、左面、上面看到的几何体的形状图;4、已知,如图,AB和DE是直立在地面上的两根立柱,AB=2m,某一时刻AB在太阳光下的投影BC=1m.(1)请你在图中画出此时DE在太阳光下的投影EF;(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF=1.5m,请你计算DE的长.5、(1)已知图1是由大小相同的小立方块搭成的几何体,请在图2的方格中分别画出从左面和从上面看到的该几何体的形状图(请依照从正面看的范例画图); (2)若要用大小相同的小立方块搭一个几何体,使得它从左面和从上面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体至少需要 个小立方块. -参考答案-一、单选题1、D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;∴这个几何体最少需要用个小正方体.故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.2、C【分析】根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;C.从三个方向看形状一样,都是圆形,故本选项符合题意;D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.故选:C.【点睛】本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.3、B【分析】根据左视图是从物体左面看,所得到的图形进行解答即可.【详解】解:图中几何体的左视图是:故选:B.【点睛】本题主要考查了简单组合体的三视图,解题的关键是掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B【分析】主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.【详解】解:主视图和左视图相同,均有三列,小正方形的个数分别为1、2、1;俯视图也有三列,但小正方形的个数为1、3、1.故选:B.【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.5、B【分析】根据主视图即从物体正面观察所得的视图求解即可.【详解】解:的主视图为,故选:B.【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6、A【分析】俯视图,从上面看到的平面图形,根据定义可得答案.【详解】解:从上面看这个几何体看到的是三个长方形,所以俯视图是:故选A【点睛】本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.7、D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.【详解】从上方朝下看只有D选项为三角形.故选:D.【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.8、B【分析】根据主视图即从物体的正面观察进而得出答案.【详解】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:【点睛】本题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.9、B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中,看不到的棱需要用虚线来表示.【详解】解:从正面看易得,该几何体的视图为B,故选:B【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,掌握主视图的概念是解题的关键.10、B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:这个几何体的俯视图是 ,故选:B.【点睛】本题考查了俯视图,熟记俯视图的定义(从物体的上面观察得到的视图)是解题关键.二、填空题1、【分析】由三视图可得该几何体是圆柱,再求解底面圆的半径为2,而高为5,再由全面积等于两个底面圆的面积加上侧面积即可.【详解】解:由三视图可得该几何体是圆柱,圆柱的底面半径= 高为5, ∴全面积 故答案为:.【点睛】本题考查的是由三视图还原几何体,圆柱的全面积的计算,从三视图中得出该几何体是圆柱是解本题的关键.2、【分析】如图,连接过作于再求解 再确定左视图是长方形,两边分别为3cm,cm,从而可得答案.【详解】解:如图,连接过作于 由俯视图可得: 由主视图可得:正六角螺母毛坯的高为:3cm, 左视图的面积为 故答案为:【点睛】本题考查的是三视图,左视图的面积的计算,掌握“左视图是长方形”是解本题的关键.3、8【分析】根据三视图还原简单几何体,由主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,即可计算出小正方体的最少块数.【详解】解:由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最多5+3=8块.故答案为8【点睛】本题主要考查了三视图,明确三视图的定义以及由三视图还原几何体的法则是解题关键.4、36【分析】由三视图可得这是一个直三棱柱,再把各个面的面积相加即可.【详解】解:由三视图可得这是一个直三棱柱,它的高为2,∵32+42=52,∴这个直三棱柱的底面的直角三角形,∴这个直三棱柱的表面积为:=36.故答案为:36.【点睛】此题考查由三视图判断几何体,掌握几何体的特征以及面积的计算方法是解决问题的关键.5、15π【分析】由三视图可知这个立体图形是底面半径为3,高为4的圆锥,利用勾股定理求出其母线长,据此可以求得侧面积.【详解】由三视图可知圆锥的底面半径为3,高为4,所以母线长为=5,所以侧面积为== 3× 5π= 15π,故答案为:15π.【点睛】本题主要考查了由三视图确定几何体和求圆锥的侧面积,涉及勾股定理,牢记公式是解题的关键,难度不大.三、解答题1、(1)变短;(2)见详解.【分析】(1)先选取B,O之间一点D,分别作出小亮的影子,比较代表影长的线段长度即可得出变化情况即可;(2)连结线段PA,并延长交底面于点E,得到线段BE即可.【详解】解(1)在小亮由B处沿BO所在的方向行走到达O处的过程取点D,通过灯光在B处小亮的影长为BE,当小亮走到D处时,小亮的影长为FD,BE>FD,∴小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短,故答案为:变短;(2)如图所示,连结PA,并延长交底面于E,则线段BD为求作小亮的影长.【点睛】本题考查投影知识,从远处向灯光处走去影长的变化,掌握影长变化规律,向灯光走近,影长变短,远离灯光,影长变长,先走近再走远先变短再变长是解题关键.2、最多可以取走16个小立方块.【分析】根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个.【详解】解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:答:最多可以取走16个小立方块.【点睛】本题主要考查了几何体的表面积,熟知几何体表面积的定义以及正方体的表面积公式是解答本题的关键.3、见解析【分析】根据三视图的含义,分别画出从正面,从左面,从上面看到的平面图形即可.【详解】解:如图,主视图,左视图,俯视图如下:【点睛】本题考查的是画简单组合体的三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.4、(1)画图见解析;(2)DE=3米【分析】(1)连接AC,过D点做AC平行线,交EB与点F,即可得投影EF.(2)太阳光属于平行光源,故,故,所以DE=3.【详解】(1)如图所示:(2)∵DE//AC∴∠EFD=∠BCA∴∴∴∴DE=3米.【点睛】本题考查了平行投影以及相似三角形的判定和性质,在实际生活中,处处都存在相似三角形.当我们与其接触时,就能利用相似的相关知识去识别和解决实际生活中的问题,如同一时刻物高与影长的问题.5、(1)见解析;(2)6.【分析】(1)从上面看得到从左往右3列正方形的个数依次为2,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可.【详解】解:(1)如图所示:(2)从左面和从上面看到的形状图与图2方格中所画的形状图相同,在俯视图的相应位置所摆放的小立方体的个数如图所示:或因此最少需要6个小立方体.故答案为6.【点睛】本题考查给出立体图形画三视图,根据画出的左视图与俯视图确定最少正方体,掌握三视图定义,利用数形结合思想是解题关键
相关试卷
这是一份2021学年第25章 投影与视图综合与测试练习,共21页。试卷主要包含了图中几何体的左视图是,下列物体中,三视图都是圆的是,如图所示的几何体的左视图为等内容,欢迎下载使用。
这是一份2020-2021学年第25章 投影与视图综合与测试巩固练习,共17页。试卷主要包含了如图,该几何体的主视图是,下面左侧几何体的主视图是等内容,欢迎下载使用。
这是一份数学九年级下册第25章 投影与视图综合与测试同步达标检测题,共22页。试卷主要包含了如图所示几何体的左视图是,如图所示的几何体,它的左视图是等内容,欢迎下载使用。