沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题
展开这是一份沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题,共19页。试卷主要包含了如图所示的几何体,其左视图是.等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是( )
A. B. C. D.
2、下列立体图形的主视图是( )
A. B. C. D.
3、下列几何体中,俯视图为三角形的是( )
A. B. C. D.
4、如图所示的几何体,其左视图是( ).
A. B. C. D.
5、下面四个立体图形中,从正面看是三角形的是( )
A. B. C. D.
6、如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是( )
A. B. C. D.
7、如图为某几何体的三视图,则该几何体是( )
A.圆锥 B.圆柱 C.三棱柱 D.四棱柱
8、在平行投影下,矩形的投影不可能是( )
A. B. C. D.
9、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为( )
A. B.
C. D.
10、如图,由一个圆柱体和一个长方体组成的几何体,其左视图是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是_____.
2、请在右侧小方格内用阴影表示“从正面观察”得到的平面图形的示意图._________
3、已知某几何体的三视图如图所示,根据图中数据求得该几何体的体积为_____.
4、一个“粮仓”的三视图如图所示(单位:m),则它的体积是____
5、如图所示是一个几何体的三视图,这个几何体的名称是___________
三、解答题(5小题,每小题10分,共计50分)
1、已知,如图,AB和DE是直立在地面上的两根立柱,AB=2m,某一时刻AB在太阳光下的投影BC=1m.
(1)请你在图中画出此时DE在太阳光下的投影EF;
(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF=1.5m,请你计算DE的长.
2、用若干个小立方块搭一几何体,使它从正面看和从上面看得到的图形如图所示.从上面看得到的图形中小正方形里的字母表示在该位置小立方块的个数.请问:
(1)表示几?这个几何体由几个小立方块搭成?
(2)画出该几何体从左面看得到的图形.
3、如图是用10块完全相同的小正方体搭成的几何体.
(1)请在空白的方格中分别画出从正面、从左面、从上面看到的所搭几何体的形状图;
(2)若保持从正面和从上面看到的形状图不变,最多还可以再搭 块小正方体.
4、如图,是由一些大小相同的小正方体组合成的简单几何体.
(1)图中有_______块小正方体;
(2)该几何体从正面看所得到的平面图形如图所示,请你在下面方格纸中分别画出从左边看和从上边看它所得到的平面图形.
5、如图是由六个棱长为1 cm的小正方体组成的几何体.
(1)该几何体的表面积是(含下底面) cm2;
(2)分别画出该立体图形的三视图.
-参考答案-
一、单选题
1、C
【分析】
利用俯视图,写出符合题意的小正方体的个数,即可判断.
【详解】
A、当7个小正方体如图分布时,符合题意,本选项不符合题意.
B、当7个小正方体如图分布时,符合题意,本选项不符合题意.
C、没有符合题意的几何图形,本选项符合题意.
D、当7个小正方体如图分布时,符合题意,本选项不符合题意.
故选:C.
【点睛】
此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.
2、A
【分析】
主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.
【详解】
解:主视图是从正面所看到的图形,是:
故选:A
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
3、D
【分析】
从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.
【详解】
从上方朝下看只有D选项为三角形.
故选:D.
【点睛】
本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.
4、B
【分析】
根据左视图的定义(一般指由物体左边向右做正投影得到的视图)求解即可.
【详解】
解:由左视图的定义可得:
左视图为一个正方形,由于正方体内部有一个圆柱体,根据其方向可得左视图为:
,
故选:B.
【点睛】
题目主要考查三视图的作法,理解三视图的定义是解题关键.
5、C
【分析】
找到从正面看所得到的图形为三角形即可.
【详解】
解:A、主视图为正方形,不符合题意;
B、主视图为圆,不符合题意;
C、主视图为三角形,符合题意;
D、主视图为长方形,不符合题意.
故选:C.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
6、C
【分析】
长方体的左视图为矩形,圆柱的左视图为矩形,据此分析即可得左视图
【详解】
从左面可看到一个长方形和一个长方形,且两个长方形等高.
故选C
【点睛】
本题考查了简单几何题的三视图,掌握简单几何题的三视图是解题的关键.
7、C
【分析】
根据三视图判断该几何体即可.
【详解】
解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.
故选:C.
【点睛】
本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.
8、A
【分析】
根据平行投影得出矩形的投影图形解答即可.
【详解】
在平行投影下,矩形的投影图形可能是线段、矩形、平行四边形,不可能是直角梯形,
故选A.
【点睛】
本题考查了平行投影,关键是根据平行投影得出矩形的投影图形.
9、B
【分析】
几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右的每列的小立方体的个数为1,2,1,从上往下的每层的小立方体的个数为1,3,即可求解
【详解】
解:几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右每列的小立方体的个数为1,2,1,从上往下每层的小立方体的个数为1,3,
所以这个几何体从正面看到的平面图形为
故选:B
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
10、A
【分析】
从左边看过去:可以看到上下两个宽度相同的长方形,从而可以得到左视图.
【详解】
解:从左边看过去:可以看到上下两个宽度相同的长方形,
所以一个圆柱体和一个长方体组成的几何体,其左视图是A选项中的图形,
故选A
【点睛】
本题考查的是三视图,掌握“三视图中的左视图”是解本题的关键,注意的是能看到的棱要以实线来体现,看不见的棱要以虚线来体现.
二、填空题
1、
【分析】
根据三视图画出图形,并且得出每列和每行的个数,然后相加即可得出答案.
【详解】
解:根据三视图可画图如下:
则组成这个几何体的小正方体的个数是:1+3+1+1+1+2=9;
故答案为:9.
【点睛】
本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.
2、见解析
【分析】
按照简单组合体三视图的画法画出相应的图形即可.
【详解】
解:如图:主视图有3列,从左往右每列小正方数形数目分别为3,1,2
【点睛】
本题考查简单组合体的三视图,理解视图的意义,掌握视图的画法是得出正确答案的前提.
3、.
【分析】
根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.
【详解】
由三视图可知,几何体是由圆柱体和圆锥体构成,
圆柱和圆锥的底面直径均为2,高分别为4和1,
∴圆锥和圆柱的底面积为π,
故该几何体的体积为:4π+π=π,
故答案为:π.
【点睛】
本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.
4、
【分析】
根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算体积即可.
【详解】
解:观察发现该几何体为圆锥和圆柱的结合体,
其体积为:,
故答案为:
【点睛】
本题考查了根据三视图计算几何体的体积,由三视图还原几何题是解题的关键.
5、圆柱体
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:由于主视图和左视图为长方形可得此几何体为柱体,
由俯视图为圆可得此几何体为圆柱体.
故答案为:圆柱体.
【点睛】
本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了空间想象能力.
三、解答题
1、(1)画图见解析;(2)DE=3米
【分析】
(1)连接AC,过D点做AC平行线,交EB与点F,即可得投影EF.
(2)太阳光属于平行光源,故,故,所以DE=3.
【详解】
(1)如图所示:
(2)∵DE//AC
∴∠EFD=∠BCA
∴
∴
∴
∴DE=3米.
【点睛】
本题考查了平行投影以及相似三角形的判定和性质,在实际生活中,处处都存在相似三角形.当我们与其接触时,就能利用相似的相关知识去识别和解决实际生活中的问题,如同一时刻物高与影长的问题.
2、(1)x=1,由7个小立方块搭成(2)见解析
【分析】
(1)根据主视图和俯视图之间的关系,可得到x的值,故可求出几何体的小立方块的个数;
(2)根据左视图的特点即可作图 .
【详解】
解:(1)由主视图和俯视图之间的关系,可得x=1
∴小立方块的个数为6+1=7个;
(2)从左面看得到的图形如下:
【点睛】
本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”.
3、(1)见解析;(2)3
【分析】
(1)根据三视图的画法分别画出从正面、左面、上面看该组合体所看到的图形即可;
(2)可在最左侧前端放两个后面再放一个即可得出答案.
【详解】
解:(1)该组合体的三视图如图所示:
(2)在俯视图的相应位置最多添加相应数量的正方体,
如图所示:
∴最多还可以再搭3块小正方体.
【点睛】
本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键.
4、(1)11;(2)见解析.
【分析】
(1)根据几何体的图形进行判断即可得到答案;
(2)根据几何体的左视图有2列,每一列的小正方形数目为2,2;俯视图有4列,每一列的小正方形的数目为2,2,1,1.
【详解】
(1)左边第一例,两层,前后两行,共4个正方体,左边第二列,两层,前后两行,共4个正方体,左边第三列两层,只有后行2个正方体,左边第四列,后行1个正方体,一共有4+4+2+1=11个,
故答案为:11;
(2)从左边看:分两行,每行各看到2个正方形,
从上面看:分为四列,前后两行,前行左边有2个正方形,后行4个正方形.
【点睛】
本题考查简单组合体的三视图,和立方体的个数,解此题的关键在于平时加强空间想象的能力.
5、(1)24;(2)见解析
【分析】
(1)根据三视图可求出几何体的表面积;
(2)主视图有3列,每列小正方形数目分别为2,2,1,左视图有2列,每列小正方形数目分别为2,1,俯视图有3列,每列小正方数形数目分别为1,2,1.据此可画出图形.
【详解】
解:(1)该几何体的表面积是:4×2+5×2+3×2=24(cm2),
故答案为: 24;
(2)如图所示:
【点睛】
本题考查几何体的三视图画法以及几何体的表面积,关键是掌握三视图所看的位置,掌握几何体表面积的计算方法.
相关试卷
这是一份数学九年级下册第25章 投影与视图综合与测试课时练习,共20页。试卷主要包含了如图几何体的主视图是,下列物体中,三视图都是圆的是,如图所示的几何体左视图是等内容,欢迎下载使用。
这是一份初中沪科版第25章 投影与视图综合与测试习题,共19页。试卷主要包含了下列物体中,三视图都是圆的是等内容,欢迎下载使用。
这是一份2020-2021学年第25章 投影与视图综合与测试精练,共20页。试卷主要包含了如图所示,该几何体的俯视图是等内容,欢迎下载使用。