初中第25章 投影与视图综合与测试同步练习题
展开这是一份初中第25章 投影与视图综合与测试同步练习题,共22页。试卷主要包含了如图所示几何体的左视图是,如图,身高1.5米的小明.等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示的几何体的俯视图是( )
A. B. C. D.
2、如图所示的几何体的主视图是( )
A. B. C. D.
3、如图,由5个完全一样的小正方体组成的几何体的左视图是( )
A. B.
C. D.
4、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是( )
A. B. C. D.
5、如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )
A. B.
C. D.
6、如图所示几何体的左视图是( )
A. B.
C. D.
7、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH.若量得米,米,则立柱CD的高为( ).
A.2.5m B.2.7m C.3m D.3.6m
8、如图,从正面看这个几何体得到的图形是( )
A. B.
C. D.
9、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )
A. B.
C. D.
10、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:
(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;
(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;
(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;
(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19
其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示是给出的几何体从三个方向看到的形状,则这个几何体最多由___个小正方体组成.
2、由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_____.
3、用小立方块搭一几何体,它的主视图和俯视图如图所示,这个几何体最少要_____个立方块,最多要______个立方块.
4、由8个相同的小正方体组成的几何体如图1所示,拿掉______个小正方体后的几何体的主视图和左视图都是图2所示图形.
5、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号.
—————— ——————
—————— ——————
三、解答题(5小题,每小题10分,共计50分)
1、根据要求完成下列题目.
(1)图中有_____块小正方体.
(2)请在方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影).
(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要____个小正方体,最多要____个小正方体.
2、将6个棱长为3cm的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.
(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.
(2)求该几何体被染成红色部分的面积.
3、一个几何体的三种视图如图所示,
(1)这个几何体的名称是______,其侧面积为______;
(2)在右面方格图中画出它的一种表面展开图;
(3)求出左视图中AB的长.
4、如图是由7个相同的小立方块搭成的几何体.请画出主视图、左视图和俯视图.
5、一个物体由几个相同的正方体堆叠成,从三个不同方向观察得到的图形如图所示,试回答下面的问题:
(1)该物体共有几层?
(2)一共需要几个正方体叠成?
-参考答案-
一、单选题
1、D
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:结合所给几何体,其俯视图应为一个正方形,然后在正方形内部的左下角还有一个小长方形,
故选D.
【点睛】
本题主要考查了简单几何体的三视图,熟知三视图的定义是解题的关键.
2、A
【分析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
解:从正面看,如图:
故选:A.
【点睛】
此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键.
3、B
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
解:从从左边看有2列两层,2列从左到右分别有2、1个小正方形,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题的关键是从左边看得到的图形是左视图.
4、C
【分析】
利用俯视图,写出符合题意的小正方体的个数,即可判断.
【详解】
A、当7个小正方体如图分布时,符合题意,本选项不符合题意.
B、当7个小正方体如图分布时,符合题意,本选项不符合题意.
C、没有符合题意的几何图形,本选项符合题意.
D、当7个小正方体如图分布时,符合题意,本选项不符合题意.
故选:C.
【点睛】
此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.
5、B
【分析】
根据既可以堵住圆形空洞,又可以堵住方形空洞从物体的三视图中即有圆形又有正方形的物体可以堵住空洞,然后对各选项的视图进行一一分析即可.
【详解】
解:∵既可以堵住圆形空洞,又可以堵住方形空洞,
∴从物体的三视图来看,三视图中具有圆形和方形的可以堵住带有圆形空洞和方形空洞的小木板,
A.正方体的三视图都是正方形,没有圆形,不可以是选项A;
B.圆柱形的直径与高相等时的正视图与左视图都是正方形,俯视图是圆形,具有圆形与正方形,可以是选项B,
C.圆锥的正视图与左视图都是三角形,俯视图数圆形,没有方形,不可以是选项C;
D.球体的三视图都是圆形,没有方形,不可以是选项D.
故选择B.
【点睛】
本题考查物体能堵住圆形空洞和方形空洞,实际上是考查物体的视图,掌握物体三视图中找出具有圆形和方形的物体是解题关键.
6、D
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中.
【详解】
解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,
故选:D
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.
7、A
【分析】
将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可.
【详解】
如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点M
∵BG//ME//DH
∴∠BGA=∠MEC,∠BAG=∠DCE=90°
∴,MD=HE
∴
∴
∴CD=CM+DM=1+1.5=2.5
故答案选:A.
【点睛】
本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键.
8、A
【分析】
首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.
【详解】
解:观察图形从左到右小正方块的个数分别为1,2,1,
故选A.
【点睛】
本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键.
9、D
【分析】
左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.
【详解】
解:该几何体从左面看到的形状图有2列,
第1列看到1个正方形,第2列看到2个正方形,
所以左视图是D,
故选D
【点睛】
本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.
10、B
【分析】
根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);
作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可.为
【详解】
解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开12﹣5=7条棱.
(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.
(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;错误,因为△ABC是等边三角形,所以∠ABC=60°.
(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19.错误,应该是a=6,b=11,a+b=17.
故选:B.
【点睛】
此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.
二、填空题
1、11
【分析】
从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从左视图可看出每一行小立方块的层数和个数,从而算出总的个数.
【详解】
解:研究该几何体最多由多少个小正方形组成,由俯视图易得最底层小立方块的个数为5,由其他视图可知第二层有5个小立方块,第三层有1个小立方块,即如下图:
那么共最多由个小立方块.
故答案为:11.
【点睛】
本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
2、4或5
【分析】
易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.
【详解】
解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,
∴组成这个几何体的小正方体的个数可能是4个或5个,
故答案为:4或5.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,解题关键是有空间想象能力.
3、
【分析】
依据主视图可得俯视图中各位置小正方体的个数,进而得到这个几何体中正方体最少和最多的个数.
【详解】
由主视图可得,这个几何体(第2列,第3列组合不唯一)最少要1+3+4=8个立方块;
由主视图可得,这个几何体最多要1+4+6=11个立方块;
故答案为:8,11.
【点睛】
本题主要考查三视图判断几何体,解题时应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
4、3、4、5
【分析】
拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层最少必须有2个小立方块,上面一层必须保留1个立方块,即可知可以拿掉小立方块的个数.
【详解】
根据题意,拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,
所以最底下一层最少必须有2个小立方块,上面一层必须保留1个立方块,如图,
故答案为:3,4、5.
【点睛】
本题考查了由三视图判断几何体,几何体的三种视图,掌握定义是关键.解决此类图的关键是由立体图形得到三视图,学生由于空间想象能力不够,易造成错误.
5、③①④②
【分析】
在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可.
【详解】
根据三视图的定义可知:第一个三视图所对应的几何体为③;
第二个三视图所对应的几何体为①;
第三个三视图对应的几何体为④;
第四个三视图对应的几何体为②;
故答案为:③①④②.
【点睛】
本题考查三视图,熟知三视图的定义是解题的关键.
三、解答题
1、(1)6;(2)见解析;(3)5,7
【分析】
(1)根据图形知图形的层数及各层的块数,相加即得;
(2)根据三视图的画法解答;
(3)最少时只能将竖列的两个的最上一个去掉,最多时在两个的最上加一个.
【详解】
解:由图知,图形共有3层,最下层有3块小正方体,中间一层有2块,最上一层有1块,
∴图中共有1+2+3=6块小正方体,
故答案为:6;
(2)如图:
(3)如图,用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要5个,最多需要7个,
故答案为:5,7.
【点睛】
此题考查画小正方体构成的立体图形的三视图,数小正方体的个数,正确掌握立体图形的三视图的画法是解题的关键.
2、(1)见解析;(2)189cm2.
【分析】
(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为2,1,1;左视图有3列,每列小正方形数目分别为1,2,1;俯视图有3列,每列小正方数形数目分别为3,1,1.据此可画出图形;
(2)分别从前面,后面,左面,右面和上面数出被染成红色部分的正方形的个数,再乘以1个面的面积即可求解.
【详解】
解:(1)作图如下:
(2)(4+4+4+4+5)×(3×3)
=21×9
=189(cm2)
答:该几何体被染成红色部分的面积为189cm2.
【点睛】
本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.
3、(1)正三棱柱,72;(2)画图见解析;(3)
【分析】
(1)由三视图所表现特征可知几何体为正三棱柱,正三棱柱侧面积为三个矩形,则侧面积为.
(2)如图所示,答案不唯一.
(3)中过E点作FG垂线,垂足为H,可求得FH=2,再由勾股定理即可求得FH=.
【详解】
(1)该几何体由主视图和左视图可判断为棱柱,由俯视图可判断为正三棱柱
(2)如图所示
(3)如图所示,中过E点作FG垂线,垂足为H
∵为等边三角形
∴FH=2,∠EHF=∠EHG=90°
∴
【点睛】
本题考查了三视图以及勾股定理,三视图是从正面、左面、上面以平行视线观察物体所得的图形,判断三视图时应结合实物,变换角度去观察,结合空间想象能力,由三视图求几何体的侧面积或表面积时,首先要根据三视图描述几何体,再根据三视图“长对正、高平齐、宽相等”的关系和轮廓线的位置确定各个面的尺寸,然后求表面积或侧面积.
4、见解析
【分析】
主视图有3列,每列小正方形数目分别为2,1,3;左视图有2列,每列小正方形数目分别为3,2;俯视图有3列,每列小正方形数目分别为2,1,1.
【详解】
解:如图所示,
【点睛】
本题考查作图—三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.
5、(1)三层;(2)9
【分析】
(1)由主视图与左视图可以得到该堆砌图形有3层;
(2)结合三种视图分析每个位置的小正方体的个数,再写在俯视图中,从而可得答案.
【详解】
解:(1)由主视图与左视图可得:这个物体一共有三层.
(2)结合三种视图可得:各个位置的小正方体的个数如图示:
所以这个图形一共由9个小正方体组成.
【点睛】
本题考查的是根据三视图还原几何体,掌握“由小正方体堆砌图形的三视图还原堆砌图形”是解本题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试当堂检测题,共19页。试卷主要包含了图1,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试同步训练题,共19页。试卷主要包含了如图所示,该几何体的俯视图是等内容,欢迎下载使用。
这是一份初中沪科版第25章 投影与视图综合与测试习题,共19页。试卷主要包含了下列物体中,三视图都是圆的是等内容,欢迎下载使用。