初中沪科版第25章 投影与视图综合与测试当堂达标检测题
展开这是一份初中沪科版第25章 投影与视图综合与测试当堂达标检测题,共20页。试卷主要包含了如图所示的几何体的左视图为等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示的几何体,它的左视图是( )
A. B. C. D.
2、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )
A. B. C. D.
3、全运会颁奖台如图所示,它的主视图是( )
A. B. C. D.
4、如图所示的几何体的左视图为( )
A. B. C. D.
5、如图所示,两个几何体各由4个相同的小正方体搭成,比较两个几何体的三视图,可以得到的正确结论是( )
A.主视图不同
B.左视图不同
C.俯视图不同
D.主视图、左视图和俯视图都不相同
6、如图,是空心圆柱体,其主视图是下列图中的( )
A. B. C. D.
7、如图所示的工件中,该几何体的俯视图是( )
A. B. C. D.
8、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )
A.6 B.7 C.8 D.9
9、如图,图形从三个方向看形状一样的是( )
A. B.
C. D.
10、下面的三视图所对应的几何体是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用一些完全相同的正方体木块搭几何体,从其正面和上面看到的形状图如图所示,则搭成这个几何体所用正方体木块的个数最少为__________.
2、一个“粮仓”的三视图如图所示(单位:),则它的侧面积是________.
3、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是________.
4、如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则搭成的几何体小立方体的个数最大是________.
5、一块直角三角形板,,,,测得边的中心投影长为,则长为__.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是由一些棱长为1cm的小正方体组成的简单几何体
(1)请直接写出该几何体的表面积(含下底面)为
(2)从正面看到的平面图形如图所示,请在下面方格中分别画出从左向右、从上向下看到的平面图形
2、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)
(2)画出图2实物的三视图.
3、如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.
4、(1)添线补全下列几何体的三种视图.
(2)如图,在地面上竖直安装着AB、CD、EF 三根立柱,在同一时刻同一光源下立柱AB、CD 形成的影子为BG与DH.
①填空:判断此光源下形成的投影是: 投影;
②作出立柱EF在此光源下所形成的影子.
5、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.
-参考答案-
一、单选题
1、C
【分析】
根据几何体的左面是一个圆环即可得左视图.
【详解】
由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线.
故选:C.
【点睛】
本题考查了三视图,根据所给几何体正确画出三视图是关键.
2、A
【分析】
根据几何体的三视图解答即可.
【详解】
根据立体图形得到:
主视图为:,
左视图为:,
俯视图为:,
故选:
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
3、C
【分析】
主视图是从前面先后看得到的图形,根据主视图对各选项一一分析即可.
【详解】
解:主视图是从前面先后看得到的图形,是C.
故选C.
【点睛】
本题考查主视图,掌握三视图的特征是解题关键.
4、C
【分析】
找到从左边看所得到的图形即可,注意所有看得到的棱用实线表示,看不到的部分用虚线表示
【详解】
解:从左边看到的图形是:
故选C
【点睛】
本题考查了简单组合体的三视图,理解看不到的且存在的是虚线解题的关键.
5、C
【分析】
根据几何体的三视图特征进行判断即可.
【详解】
解:观察两个几何体的三视图,
则知:主视图相同,左视图相同,俯视图不同,
故选项A、B、D错误,选项C正确,
故选:C.
【点睛】
本题考查几何体的三视图,理解三视图的意义是解答的关键.
6、C
【分析】
从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.
【详解】
主视图是在几何体正面面观察物体得到的图形.能够看见的部分用实线表示,不能看见的部分用虚线表示.
本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线.
故选:C
【点睛】
本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形.
7、B
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个同心圆,外圆是实线,内圆是虚线,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图.
8、B
【分析】
根据几何体的三视图特点解答即可.
【详解】
解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,
∴该几何体最少有4+2+1=7个小正方体组成,
故选:B.
【点睛】
本题考查几何体的三视图,掌握三视图的特点是解答的关键.
9、C
【分析】
根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.
【详解】
解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;
B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;
C.从三个方向看形状一样,都是圆形,故本选项符合题意;
D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.
故选:C.
【点睛】
本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.
10、C
【分析】
根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案.
【详解】
解:根据三视图知,组成该几何体的小正方体分布情况如下:
与之相对应的C选项,
故选:C.
【点睛】
本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.
二、填空题
1、7
【分析】
由主视图和左视图确定左视图的形状,再判断最少的正方体的个数即可.
【详解】
解:由题中所给出的主视图知物体共3列,且最高两层的有2列,一层的有一列;由俯视图知共5列,
所以小正方体的个数最少的几何体为:2+2+1+1+1=7个.
故答案为:7.
【点睛】
考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.
2、
【分析】
根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算侧面积即可.
【详解】
解:由三视图可知,这个几何体上部分是一个圆锥,下部分是一个圆柱,
由图中数据可知,圆锥的高为7-4=3m,圆锥的底面圆的直径为6m,圆柱的高为4m,底面圆直径为6m,
∴圆锥的母线长m ,
∴圆柱部分的侧面积,圆锥的侧面积,
∴这个几何体的侧面积,
故答案为:.
【点睛】
本题主要考查了简单组合体的三视图,圆锥和圆柱的侧面积计算,解题的关键在于能够根据几何体的三视图确定几何体为圆锥和圆柱的结合体.
3、
【分析】
由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.
【详解】
解:由几何体的三视图可得出原几何体为圆锥和圆柱组合体,
根据主视图中给定数据可知圆锥的母线长是3,底面圆的直径是4,圆柱的高是2,
因此圆锥的侧面积为:
圆柱的侧面积为:
底面圆的面积为:
因此这个几何体的表面积为:
故答案为:.
【点睛】
本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.
4、7
【分析】
根据俯视图和左视图确定每层的立方体的个数,即可求解.
【详解】
解:由俯视图易得最底层有4个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,
那么小立方体的个数可能是5个或6个或7个.
故答案为:7
【点睛】
此题考查了几何体的三视图,解题的关键是根据几何体的三视图确定各层的立方体的个数.
5、
【分析】
由题意易得△ABC∽△,根据相似比求解即可.
【详解】
解:,,,=24,
∴,
∵△,
,即,
故答案为:.
【点睛】
本题综合考查了中心投影的特点和规律以及相似三角形性质的运用,解题的关键是利用中心投影的特点可知这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.
三、解答题
1、(1)34 ;(2)见解析
【分析】
(1)先计算出每个小正方体一个面的面积,然后求出一共露在外面的面有多少个即可得到答案;
(2)根据三视图的画法作图即可.
【详解】
解:(1)∵每个小正方体的棱长为,
∴每个小正方体的一个面的面积为,
∵从上面看露在外面的小正方体的面有6个,从底面看露在外面的面有6个,从正面看,露在外面的面有6个,从后面看,露在外面的面有6个,从左面看,露在外面的面有4个,从右面看,露在外面的面有4个,然后在最下层,第二行第二列的小正方体右边1个面露在外面,第二行第四列的小正方体左边一个面露在外面,
∴露在外面的面一共有34个,
∴该几个体的表面积为,
故答案为:;
(2)如图所示,即为所求;
【点睛】
本题主要考查了简单几何体的表面积和画三视图,解题的关键在于能够熟练掌握相关知识进行求解.
2、(1)见解析;(2)见解析
【分析】
(1)如图,分别以为端点作射线,两射线交于点即可求得的位置,过和木桩的顶端,以为端点做射线,与底面交于点,木桩底部为点,连接,则即为竖立在地面上木桩的影子;
(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线
【详解】
(1)如图所示,为灯源,EF为竖立在地面上木桩的影子,
(2)如图所示,
【点睛】
本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.
3、见解析.
【分析】
从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层,再画图即可.
【详解】
解:如图所示:
【点睛】
本题考查的是小正方体堆砌图形的三视图,掌握“三视图的含义”是画图的关键.
4、(1)画图见详解;(2)①中心;②见详解.
【分析】
(1)根据三视图的画图原理,看见的线是实线,看不见的线是虚线,左视图中补画燕尾槽底部线用虚线,俯视图中燕尾槽开口部分两条线用实线补画,燕尾槽底部两条线用虚线补画即可;
(2)①连结AG,并反向延长,两CH并反向延长两射线交于点O,则点O就是光源,根据中心投影的定义“由同一点(点光源)发出的光线形成的投影叫做中心投影”即可得;
②连接OE,并延长与地面相交,交点为I,如图FI为立柱EF在光源O下的投影即可.
【详解】
解:(1)根据三视图的画图原理,左视图中补画燕尾槽底部线用虚线,俯视图中燕尾槽开口部分两条线用实线补画,燕尾槽底部两条线用虚线补画;
(2)①连结AG,并反向延长,两CH并反向延长两射线交于点O,则点O就是光源,由中心投影的定义得:此光线下形成的投影是:中心投影
故答案为:中心;
②如图,连接OE,并延长与地面相交,交点为I,则FI为立柱EF在光源O下所形成的影子.
【点睛】
本题考查了补画三视图实线与虚线,中心投影的定义,根据已知立柱的影子确认光源的位置,在光源下画立柱影子,掌握补画三视图实线与虚线区别,中心投影的定义,两立柱与影子确认光源的位置,在光源下画立柱影子是解题关键.
5、见解析
【分析】
利用三视图的画法画出图形即可.
【详解】
根据三视图的画法,画出相应的图形如下:
【点睛】
本题考查简单组合体的三视图,理解三视图的意义是正确解答问题的关键.
相关试卷
这是一份沪科版九年级下册第25章 投影与视图综合与测试练习,共18页。试卷主要包含了如图所示的礼品盒的主视图是,如图所示的几何体的主视图是,如图所示的几何体的俯视图是等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试练习题,共18页。试卷主要包含了如图所示的几何体,其左视图是.等内容,欢迎下载使用。
这是一份数学九年级下册第25章 投影与视图综合与测试综合训练题,共19页。试卷主要包含了如图所示的几何体的主视图是,如图所示的支架等内容,欢迎下载使用。