沪科版九年级下册第25章 投影与视图综合与测试同步测试题
展开
这是一份沪科版九年级下册第25章 投影与视图综合与测试同步测试题,共19页。试卷主要包含了如图所示的礼品盒的主视图是,图1等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )A.6 B.7 C.8 D.92、如图,将一个装了一半水的密闭圆柱形玻璃杯水平放置时,水面的形状是( )A.圆 B.梯形 C.长方形 D.椭圆3、根据三视图,求出这个几何体的侧面积( )A. B. C. D.4、如图所示的礼品盒的主视图是( )A. B. C. D.5、如图,图形从三个方向看形状一样的是( )A. B. C. D.6、水平放置的下列几何体,主视图不是矩形的是( )A. B.C. D.7、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个8、如图是一个几何体的实物图,则其主视图是( )A. B. C. D.9、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A.俯视图不变,左视图不变 B.主视图改变,左视图改变C.俯视图改变,主视图改变 D.主视图不变,左视图改变10、7个小正方体按如图所示的方式摆放,则这个图形的左视图是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则搭成的几何体小立方体的个数最大是________.2、一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为12,则a的值___.3、如图是一个几何体的三视图,则这个几何体的表面积为__.4、由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是________.5、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留). 从正面看 从左面看 从上面看三、解答题(5小题,每小题10分,共计50分)1、用若干个小立方块搭一几何体,使它从正面看和从上面看得到的图形如图所示.从上面看得到的图形中小正方形里的字母表示在该位置小立方块的个数.请问:(1)表示几?这个几何体由几个小立方块搭成?(2)画出该几何体从左面看得到的图形.2、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)该几何体的表面积(含下底面)为 ;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加 个小正方体.3、如图,已知小华、小强的身高都是1.6m,小华、小强之间的水平距离BC为14m,在同一盏路灯下,小华的影长AB=4m,小强的影长CD=3m,求这盏路灯OK的高度.4、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)(2)画出图2实物的三视图.5、将6个棱长为3cm的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积. -参考答案-一、单选题1、B【分析】根据几何体的三视图特点解答即可.【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,∴该几何体最少有4+2+1=7个小正方体组成,故选:B.【点睛】本题考查几何体的三视图,掌握三视图的特点是解答的关键.2、C【分析】根据水平面与圆柱的底面垂直,可得从上面看,水面的形状为长方形,即可求解.【详解】解:∵水平面与圆柱的底面垂直,∴从上面看,水面的形状为长方形.故选:C【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从前面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.3、D【分析】首先根据题意得出这个几何体是圆柱,然后根据三视图得出圆柱的高和底面半径,最后根据圆柱的侧面积公式求解即可.【详解】解:由题意知,几何体是底面直径为10、高为20 的圆柱,所以其侧面积为.故选:D.【点睛】此题考查了几何体的三视图,求圆柱的表面积,解题的关键是熟练掌握几何体的三视图,求圆柱的表面积公式.4、B【分析】找出从几何体的正面看所得到的图形即可.【详解】解:从礼品盒的正面看,可得图形:故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.5、C【分析】根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;C.从三个方向看形状一样,都是圆形,故本选项符合题意;D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.故选:C.【点睛】本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.6、C【分析】根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断【详解】解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形故C选项符合题题意,故选C【点睛】本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键.7、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可.为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开12﹣5=7条棱.(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;错误,因为△ABC是等边三角形,所以∠ABC=60°.(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19.错误,应该是a=6,b=11,a+b=17.故选:B.【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.8、C【分析】找到从正面看所得到的图形即可.【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.9、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A.【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键.10、C【分析】细心观察图中几何体摆放的位置,根据左视图是从左面看到的图象判定则可.【详解】解:从左边看,是左边3个正方形,右边一个正方形.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.二、填空题1、7【分析】根据俯视图和左视图确定每层的立方体的个数,即可求解.【详解】解:由俯视图易得最底层有4个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,那么小立方体的个数可能是5个或6个或7个.故答案为:7【点睛】此题考查了几何体的三视图,解题的关键是根据几何体的三视图确定各层的立方体的个数.2、【分析】观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,根据勾股定理可得底面边长为a,根据长方形的面积公式和这个正三棱柱的侧面积为12,可得关于a的方程,解方程即可求得a的值.【详解】解:观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,则底面边长为a,依题意有a×2×3=12,解得a=.故答案为:.【点睛】此题考查了由三视图判断几何体,关键是由三视图得到正三棱柱的高和底面边长.3、4π【分析】先判定这个几何体是圆锥,再根据圆锥的特点求出其表面积.【详解】解:根据三视图可得这个几何体是圆锥,底面积=π×12=π,侧面积为==3π,则这个几何体的表面积=π+3π=4π;故答案为:4π.【点睛】此题主要考查圆锥的表面积,解题的关键是根据三视图的得到几何体是圆锥.4、3【分析】根据所给出的图形可知这个几何体共有2层,2列,先看第一层正方体可能的最少个数,再看第二层正方体的可能的最少个数,相加即可.【详解】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故答案为:3.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5、【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:由图可知,圆柱体的底面直径为2,高为3,所以,侧面积.故答案为:.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高.三、解答题1、(1)x=1,由7个小立方块搭成(2)见解析【分析】(1)根据主视图和俯视图之间的关系,可得到x的值,故可求出几何体的小立方块的个数;(2)根据左视图的特点即可作图 .【详解】解:(1)由主视图和俯视图之间的关系,可得x=1∴小立方块的个数为6+1=7个;(2)从左面看得到的图形如下:【点睛】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”.2、(1)见解析;(2)28;(3)2【分析】(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.【详解】(1)如图所示:(2)(4×2+6×2+4×2)×(1×1) =(8+12+8)×1=28故答案为:28(3)由分析可知,最多可以再添加2个小正方体,如图,故答案为:2【点睛】此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.3、4.8m【分析】根据题意得到三角形相似,利用相似三角形的对应边的比列等式计算即可;【详解】解:∵,∴,,∴,,由题意得:,,,∴,,∵,∴,∴,,整理得:,解得:,∴这盏路灯OK的高度是4.8m.【点睛】本题主要考查了相似三角形的判定与性质,中心投影,准确计算是解题的关键.4、(1)见解析;(2)见解析【分析】(1)如图,分别以为端点作射线,两射线交于点即可求得的位置,过和木桩的顶端,以为端点做射线,与底面交于点,木桩底部为点,连接,则即为竖立在地面上木桩的影子;(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线【详解】(1)如图所示,为灯源,EF为竖立在地面上木桩的影子,(2)如图所示,【点睛】本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.5、(1)见解析;(2)189cm2.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为2,1,1;左视图有3列,每列小正方形数目分别为1,2,1;俯视图有3列,每列小正方数形数目分别为3,1,1.据此可画出图形;(2)分别从前面,后面,左面,右面和上面数出被染成红色部分的正方形的个数,再乘以1个面的面积即可求解.【详解】解:(1)作图如下:(2)(4+4+4+4+5)×(3×3)=21×9=189(cm2)答:该几何体被染成红色部分的面积为189cm2.【点睛】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.
相关试卷
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题,共22页。试卷主要包含了如图所示的几何体,其左视图是.,如图所示的几何体的俯视图是,图1,分别从正面,下列物体中,三视图都是圆的是等内容,欢迎下载使用。
这是一份初中数学第25章 投影与视图综合与测试同步达标检测题,共20页。试卷主要包含了图1,下面的三视图所对应的几何体是等内容,欢迎下载使用。
这是一份初中沪科版第25章 投影与视图综合与测试课时练习,共18页。试卷主要包含了如图所示的礼品盒的主视图是等内容,欢迎下载使用。