初中沪科版第25章 投影与视图综合与测试习题
展开这是一份初中沪科版第25章 投影与视图综合与测试习题,共19页。试卷主要包含了下列物体中,三视图都是圆的是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一个几何体如图所示,则该几何体的左视图是( )
A. B. C. D.
2、如图是一根空心方管,它的主视图是( )
A. B. C. D.
3、下面图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )
A.四棱柱 B.四棱锥 C.圆柱 D.圆锥
4、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是( )
A.左视图和俯视图不变 B.主视图和左视图不变
C.主视图和俯视图不变 D.都不变
5、下列几何体中,其三视图完全相同的是( )
A. B.
C. D.
6、下面四个立体图形中,从正面看是三角形的是( )
A. B. C. D.
7、下列物体中,三视图都是圆的是( )
A. B.
C. D.
8、如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的俯视图为( )
A. B.
C. D.
9、如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是( )
A. B.
C. D.
10、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )
A.6 B.7 C.8 D.9
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,某工件的三视图(单位:),若俯视图为直角三角形,则此工件的体积为__.
2、如图,小亮从一盏9米高的路灯下处向前走了米到达点处时,发现自己在地面上的影子CE是米,则小亮的身高DC为____________米.
3、日晷是我国古代测定时刻的仪器,它是利用__来测定时刻的.
4、若干个小正方体组成一个几何体,从正面和左面看都是如图所示的图形, 则需要这样小正方体至少______块.
5、一个几何体的三视图如图所示,则该几何体的表面积是_________.
三、解答题(5小题,每小题10分,共计50分)
1、请从正面、左面、上面观察, 画出该几何体的三视图
2、根据要求回答以下视图问题:
(1)如图①,它是由5个小正方体摆成的一个几何体,将正方体①移走后,新几何体与原几何体相比, 视图没有发生变化;
(2)如图②,请你在网格纸中画出该几何体的主视图(请用斜线阴影表示);
(3)如图③,它是由几个小正方体组成的几何体的俯视图,小正方形上的数字表示该位置上的正方体的个数,请在网格纸中画出该几何体的左视图(请用斜线阴影表示).
3、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)
(2)画出图2实物的三视图.
4、下面是由一些棱长为a厘米的正方体小木块搭建成的几何体的主视图、左视图和俯视图.
(1)该几何体是由 块小木块组成的;
(2)求出该几何体的体积;
(3)求出该几何体的表面积(包含底面).
5、小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是在下午拍摄的?
-参考答案-
一、单选题
1、B
【分析】
根据几何体左视图的概念求解即可.
【详解】
解:由左视图的概念可得,这个几何体的左视图为:
.
故选:B.
【点睛】
此题考查了几何体的左视图,解题的关键是熟练掌握几何体左视图的概念.左视图,一般指由物体左边向右做正投影得到的视图.
2、A
【分析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
解:从正面看,是内外两个正方形,
故选A.
【点睛】
本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.
3、C
【分析】
根据三视图即可完成.
【详解】
此几何体为一个圆柱
故选:C.
【点睛】
本题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.
4、A
【分析】
根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.
【详解】
解:若去掉1号小正方体, 主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,
从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,
从左边看过去,看到的小正方形的个数与排列方式不变; 所以左视图不变,
所以A符合题意,B,C,D不符合题意;
故选:A.
【点睛】
本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.
5、A
【分析】
找到从物体正面、左面和上面看得到的图形全等的几何体即可.
【详解】
解:A、球的三视图完全相同,都是圆,正确;
B、圆柱的俯视图与主视图和左视图不同,错误;
C、四棱锥的俯视图与主视图和左视图不同,错误;
D、圆锥的俯视图与主视图和左视图不同,错误;
故选A.
【点睛】
考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.
6、C
【分析】
找到从正面看所得到的图形为三角形即可.
【详解】
解:A、主视图为正方形,不符合题意;
B、主视图为圆,不符合题意;
C、主视图为三角形,符合题意;
D、主视图为长方形,不符合题意.
故选:C.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
7、C
【分析】
根据主视图、左视图、俯视图的判断方法,逐项进行判断即可.
【详解】
A、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意;
B. 圆锥的主视图是三角形,左视图是三角形,俯视图是圆,不符合题意;
C.球的三视图都是圆,符合题意;
D.正方体的三视图都是正方形,不符合题意.
故选:C.
【点睛】
题目主要考查了简单几何体的三视图,理解三视图的作法是解题的关键.
8、C
【分析】
先根据主视图可得出观察这个立体图形的正面,再根据俯视图的定义(从上面观察物体所得到的图形叫做俯视图)即可得.
【详解】
解:由题意得:观察这个立体图形的正面如下:
则它的俯视图为
故选:C.
【点睛】
本题考查了三视图,掌握理解俯视图的定义是解题关键.
9、C
【分析】
根据几何体的结构特征及俯视图可直接进行排除选项.
【详解】
解:如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是;
故选C.
【点睛】
本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键.
10、B
【分析】
根据几何体的三视图特点解答即可.
【详解】
解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,
∴该几何体最少有4+2+1=7个小正方体组成,
故选:B.
【点睛】
本题考查几何体的三视图,掌握三视图的特点是解答的关键.
二、填空题
1、30cm3
【分析】
通过三视图还原原几何体,利用柱体的体积公式V=Sh即可求解.
【详解】
解:由主视图与左视图都是长方形,说明该几何体是柱体,由俯视图知底面是直角三角形的直三棱柱,
∴几何体的三视图转化成的几何体为:底面为直角三角形的直三棱柱,
由主视图与左视图可知底边是直角边为4cm,3cm的直角三角形,高为5cm的三棱柱,
底面三角形面积S=
∴此工件的体积=Sh=6×5=30(cm3),
故答案为:30cm3.
【点睛】
本题考查由三视图到立体图形,通过简单几何体的三视图逆向思维得出简单几何体,柱体的体积,关键是掌握由三视图通过平面图形到立体图形的想象得出几何体.
2、1.8
【分析】
同一时刻下物体高度的比等于影长的比,构造相似三角形计算即可.
【详解】
如图,由题意知米,米,米,且,
∴米,
∵,
∴
又∵
∴,
∴,即,
解得(米),即小亮的身高为1.8米;
故答案为:1.8.
【点睛】
本题考查平行投影的相关知识点,能够根据题意构造相似是解题关键点.
3、日影
【分析】
根据日晷的工作原理解答即可.
【详解】
解:晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度.
故答案是:日影.
【点睛】
本题考查了数学常识,此类问题要结合实际问题来解决,生活中的一些数学常识要了解.
4、5
【分析】
画出最少时俯视图即可解决问题.
【详解】
解:观察主视图和左视图可知这个几何体的小正方体的个数最少时,俯视图如图所示.
2+1+2=5,
故答案为5.
【点睛】
本题考查了三视图.从正面看,所得到的图形是主视图;从左面看,所得到的图形是左视图;从上面看,所得到的图形是俯视图.
5、48π+64
【分析】
原几何体为圆柱的一半,且高为8,底面圆的半径为4,表面积由上下两个半圆及正面的正方形和侧面圆柱面积构成,分别求解相加可得答案.
【详解】
解:由三视图可知:原几何体为圆柱的一半,(沿中轴线切开),
由题意可知,圆柱的高为8,底面圆的半径为4,
故其表面积为S=42π+4π×8+8×8=48π+64.
故答案为:48π+64.
【点睛】
本题考查由几何体的三视图求面积,由三视图得出原几何体的形状和数据是解决问题的关键,属基础题.
三、解答题
1、见解析
【分析】
根据主视图的定义画出从前面先后看得到的图形,根据左视图的定义画出从左向右看得到的图形,根据俯视图的定义画出从上向下看得到的图形即可.
【详解】
解:主视图是从前面先后看得到的图形,图形分三列,左边列有三层3个小正方形,中间列一层1个小正方形,右边列有两层2个小正方形,根据看到的图形可画出主视图,
左视图是从左向右看得到的图形,图形分三列,左边列左边列有三层3个小正方形,中间列两层2个小正方形,右边列有一层1个小正方形,根据看到的图形可画出左视图,
俯视图是从上向下看得到的图形,图形分三列,上对齐,左边列有3个小正方形,中间列2个小正方形,右边列有1个小正方形,根据看到的图形可画出俯视图.
【点睛】
本题考查简单组合体的三视图,掌握三视图的定义是解题关键.
2、
(1)主
(2)见解析
(3)见解析
【分析】
(1)根据移开后的主视图和没有移开时的主视图一致即可求解;
(2)根据题意画出主视图即可;
(3)根据从左边起各列的小正方形数分别为2,3,1,画出左视图即可.
(1)
将正方体①移走后,新几何体与原几何体相比主视图没有变化,如图,
故答案为:主
(2)
图②的主视图如图,
(3)
图③的左视图如图,
【点睛】
本题考查了画三视图,根据立体图形得出三视图是解题的关键.
3、(1)见解析;(2)见解析
【分析】
(1)如图,分别以为端点作射线,两射线交于点即可求得的位置,过和木桩的顶端,以为端点做射线,与底面交于点,木桩底部为点,连接,则即为竖立在地面上木桩的影子;
(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线
【详解】
(1)如图所示,为灯源,EF为竖立在地面上木桩的影子,
(2)如图所示,
【点睛】
本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.
4、(1)10;(2)10a3 cm3;(3)40a2 cm2.
【分析】
(1)根据三视图的定义解决问题即可;
(2)求出10个小正方体的体积和即可;
(3)还原出立体图形,进而求出各个面的面积进行加总求和.
【详解】
解答:解:(1)几何体的小正方形的个数如俯视图所示,2=1+3+1+1+2=10.
故答案为:10.
(2)V=10a3(cm3)
∴该几何体的体积为10a3cm3.
(3)S=2(6a2+6a2+6a2)+2(a2+a2)=40a2(cm2).
∴该几何体的表面积40a2cm2.
【点睛】
本题主要是考查了立体图形的三视图以及体积、表面积的求解,通过三视图还原得到原立体图形,需要一定的空间想象能力,另外表面积的求解,不要漏掉一些面.
5、右边一幅照片是下午拍摄的
【分析】
根据人和影子的位置,结合投影的概念,分别判断即可得到正确答案.
【详解】
右边一幅照片是下午拍摄的.因为天安门坐北朝南,由人影在人身后偏右,推知太阳在西南方向,此时是下午时间.
【点睛】
本题考查投影的概念,能够结合物体和影子的位置进行准确判断是解此类题的关键.
相关试卷
这是一份沪科版第25章 投影与视图综合与测试课后练习题,共18页。试卷主要包含了下列物体的左视图是圆的为,如图所示的几何体的主视图为,如图所示的几何体的俯视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试练习题,共20页。试卷主要包含了如图,几何体的左视图是,如图所示的几何体的俯视图是,图1等内容,欢迎下载使用。
这是一份初中沪科版第25章 投影与视图综合与测试测试题,共19页。试卷主要包含了如图所示的礼品盒的主视图是,下列物体中,三视图都是圆的是等内容,欢迎下载使用。