沪科版九年级下册第25章 投影与视图综合与测试同步训练题
展开
这是一份沪科版九年级下册第25章 投影与视图综合与测试同步训练题,共19页。试卷主要包含了如图所示,该几何体的俯视图是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )
A.15个B.13个C.11个D.5个
2、如图所示的几何体的左视图为( )
A.B.C.D.
3、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:
(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;
(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;
(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;
(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19
其中正确结论的个数有( )
A.1个B.2个C.3个D.4个
4、如图所示,该几何体的俯视图是
A.B.
C.D.
5、下列几何体中,从正面看和从左面看形状均为三角形的是( )
A.B.
C.D.
6、如图,这个几何体是将一个正方体中间挖出一个圆柱体后的剩余部分,该几何体的主视图是( )
A.B.C.D.
7、如图,将一块含30°角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB=10,BE=3,则AB在直线m上的正投影的长是( )
A.5B.4C.3+4D.4+4
8、一个几何体的三视图如图所示,这个几何体是( )
A.圆柱B.棱柱C.圆锥D.球
9、如图,是空心圆柱体,其主视图是下列图中的( )
A.B.C.D.
10、在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )
A.AB.BC.CD.D
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下图是由若干个相同的小正方体组合而成的一个几何体的三视图,则组成这个几何体的小正方体个数是_________.
2、一个几何体由若干大小相同的小正方体搭成,如图分别是从它的正面、上面看到的形状图,若组成这个几何体的小正方体最少需要m个,最多需要n个,则m﹣n=____.
3、下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为 _____.
4、如图所示是给出的几何体从三个方向看到的形状,则这个几何体最多由___个小正方体组成.
5、一个几何体是由一些大小相同的校正方体摆成的,从正面看与从上面看得到的形状如图所示,则组成这个几何体的校正方体最多有_________个
三、解答题(5小题,每小题10分,共计50分)
1、补全如图的三视图.
2、(1)已知图1是由大小相同的小立方块搭成的几何体,请在图2的方格中分别画出从左面和从上面看到的该几何体的形状图(请依照从正面看的范例画图);
(2)若要用大小相同的小立方块搭一个几何体,使得它从左面和从上面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体至少需要 个小立方块.
3、如图,是由一些大小相同且棱长为1的小正方形组合成的简单几何体.
(1)这几个简单几何体的表面积(包含底面部分)是___________;
(2)该几何体的立体图形如图所示,请在如图方格纸中分别画出它的从左面看和从上面看到的图形(请用铅笔涂上阴影)
4、如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图.
5、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.
-参考答案-
一、单选题
1、A
【分析】
根据主视图和左视图,分别找出每行每列立方体最多的个数,相加即可判断出答案.
【详解】
综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个,
所以最多有(个),不可能有15个.
故选:A.
【点睛】
本题考查三视图,根据题目给出的视图,出每行每列的立方体个数是解题的关键.
2、C
【分析】
找到从左边看所得到的图形即可,注意所有看得到的棱用实线表示,看不到的部分用虚线表示
【详解】
解:从左边看到的图形是:
故选C
【点睛】
本题考查了简单组合体的三视图,理解看不到的且存在的是虚线解题的关键.
3、B
【分析】
根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);
作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可.为
【详解】
解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开12﹣5=7条棱.
(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.
(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;错误,因为△ABC是等边三角形,所以∠ABC=60°.
(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19.错误,应该是a=6,b=11,a+b=17.
故选:B.
【点睛】
此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.
4、D
【分析】
根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.
【详解】
解:根据题意得:D选项是该几何体的俯视图.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
5、C
【分析】
根据几何体的三视图解答.
【详解】
解:圆柱从正面看是长方形,故A选项不符合题意;
四棱柱从正面看是长方形,故B选项不符合题意;
圆锥从正面看是三角形,从左面看是三角形,故C选项符合题意;
三棱柱从正面看是长方形,故D选项不符合题意;
故选:C.
【点睛】
此题考查简单几何体的三视图,正确掌握各几何体的三视图及视角的位置是解题的关键.
6、A
【分析】
根据主视图的概念求解即可.
【详解】
解:由题意可得,该几何体的主视图是:
.
故选:A.
【点睛】
此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念.
7、C
【分析】
根据30°角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明△ACD∽△CBE,再根据相似三角形的性质可得CD的长,进而得出DE的长.
【详解】
解:在Rt△ABC中,∠ABC=30°,AB=10,
∴AC=AB=5,BC=AB•cs30°=10×,
在Rt△CBE中,CE=,
∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
∴Rt△ACD∽Rt△CBE,
∴,
∴CD=,
∴DE=CD+BE=,
即AB在直线m上的正投影的长是,
故选:C.
【点睛】
本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键.
8、A
【分析】
根据三视图判断几何体的形状即可;
【详解】
由已知三视图可知,主视图、左视图为长方形,俯视图为圆,则符合条件的立体图形是圆柱;
故选A.
【点睛】
本题主要考查了三视图的判断,准确分析是解题的关键.
9、C
【分析】
从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.
【详解】
主视图是在几何体正面面观察物体得到的图形.能够看见的部分用实线表示,不能看见的部分用虚线表示.
本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线.
故选:C
【点睛】
本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形.
10、D
【分析】
由太阳光是平行光线,可知同一时刻下,影子的朝向一致,由此进行求解即可.
【详解】
解:太阳光是平行光线,因此同一时刻下,影子的朝向是一致的.
故选:D.
【点睛】
考查主要考查了的影子问题,解题的关键在于能够知道太阳光是平行光线.
二、填空题
1、5
【分析】
利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.
【详解】
解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,
第二有1个小正方体,
因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.
故答案为:5.
【点睛】
本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.
2、﹣4
【分析】
由主视图和俯视图,判断最多的正方体的个数即可解决问题.
【详解】
解:由主视图和俯视图可确定所需正方体个数多时的俯视图为:
最多的小正方形个数时:
∴n=1+2+2+2+3+3=13,
最少的小正方形个数时:
∴m=1+1+1+2+1+3=9,
∴m-n=9-13=﹣4,
故答案为:﹣4
【点睛】
此题主要考查了由三视图判断几何体,根据主视图和俯视图画出所需正方体个数最多和最少的俯视图是关键.
3、③④①②
【分析】
根据从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.
【详解】
解:西为③,西北为④,东北为①,东为②,
将它们按时间先后顺序排列为③④①②,
故答案是:③④①②.
【点睛】
本题考查平行投影的特点和规律,解题的关键是掌握在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.
4、11
【分析】
从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从左视图可看出每一行小立方块的层数和个数,从而算出总的个数.
【详解】
解:研究该几何体最多由多少个小正方形组成,由俯视图易得最底层小立方块的个数为5,由其他视图可知第二层有5个小立方块,第三层有1个小立方块,即如下图:
那么共最多由个小立方块.
故答案为:11.
【点睛】
本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
5、6
【分析】
易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.
【详解】
解:组成这个几何体的小正方块最多有3+3=6块.
故答案为:6.
【点睛】
本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.
三、解答题
1、见解析
【分析】
视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.
【详解】
解:如图所示;
【点睛】
此题主要考查三视图的画法,注意实线和虚线在三视图的用法.
2、(1)见解析;(2)6.
【分析】
(1)从上面看得到从左往右3列正方形的个数依次为2,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1;依此画出图形即可;
(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可.
【详解】
解:(1)如图所示:
(2)从左面和从上面看到的形状图与图2方格中所画的形状图相同,
在俯视图的相应位置所摆放的小立方体的个数如图所示:
或
因此最少需要6个小立方体.
故答案为6.
【点睛】
本题考查给出立体图形画三视图,根据画出的左视图与俯视图确定最少正方体,掌握三视图定义,利用数形结合思想是解题关键
3、
(1)22
(2)见解析
【分析】
(1)直接利用几何体的表面积求法,分别求出各侧面即可;
(2)利用从不同角度进而得出观察物体进而得出左视图和俯视图.
(1)
解:这个几何体的表面积为2×4+2×4+2×3=22,
故答案为:22.
(2)
解:如图所示:
.
【点睛】
本题主要考查了几何体的表面积求法以及三视图画法,注意观察角度是解题关键.
4、见解析
【分析】
主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.
【详解】
解:如图所示.
【点睛】
考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形.
5、见解析
【分析】
根据三视图的画法,直接画出主视图、左视图和俯视图即可.
【详解】
解:如图所示:
【点睛】
本题考查三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.
相关试卷
这是一份数学九年级下册第25章 投影与视图综合与测试单元测试同步练习题,共19页。试卷主要包含了如图是下列哪个立体图形的主视图,下列物体中,三视图都是圆的是等内容,欢迎下载使用。
这是一份数学第25章 投影与视图综合与测试当堂检测题,共18页。
这是一份初中第25章 投影与视图综合与测试同步练习题,共22页。试卷主要包含了如图所示几何体的左视图是,如图,身高1.5米的小明.等内容,欢迎下载使用。