沪科版九年级下册第25章 投影与视图综合与测试达标测试
展开
这是一份沪科版九年级下册第25章 投影与视图综合与测试达标测试,共20页。试卷主要包含了如图所示的几何体的主视图为等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的俯视图为( )A. B.C. D.2、如图所示的几何体左视图是( )A. B.C. D.3、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH.若量得米,米,则立柱CD的高为( ).A.2.5m B.2.7m C.3m D.3.6m4、下列几何体中,俯视图为三角形的是( )A. B. C. D.5、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC=( )A.7.2 B.6.6 C.5.7 D.7.56、如图所示的几何体的主视图为( )A. B. C. D.7、全运会颁奖台如图所示,它的主视图是( )A. B. C. D.8、下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( )A. B.C. D.9、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是( )A. B.C. D.10、下列哪种光线形成的投影是平行投影( )A.太阳 B.探照灯 C.手电筒 D.路灯第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、图2是图1中长方体的三视图,用S表示面积,S主=x2+2x,S左=x2+x,则S俯=___.2、由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是________.3、如图,AB和DE是直立在地面上的两根立柱,AB=6(m),AB在阳光下的影长BC=3(m),在同一时刻阳光下DE的影长EF=4(m),则DE的长为________米.4、如图为一个圆锥的三视图,这个圆锥的侧面积为_________.5、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数最少是_________个.三、解答题(5小题,每小题10分,共计50分)1、如图是由块积木搭成的几何体,这几块积木都是相同的正方体请画出从正面、左面、上面看到的这个几何体的形状图.2、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图.3、如图,是公园的一圆形桌面的主视图,表示该桌面在路灯下的影子.(1)请你在图中找出路灯的位置(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度为2m,求路灯O与地面的距离.4、如图,路灯灯泡在线段上,在路灯下,王华的身高用线段表示,她在地上的影子用线段表示,小亮的身高用线段表示.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子;(2)如果王华的身高米,她的影长米,且她到路灯的距离米,求路灯的高度.5、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么请画出添加小正方体后所得几何体所有可能的主视图. -参考答案-一、单选题1、C【分析】先根据主视图可得出观察这个立体图形的正面,再根据俯视图的定义(从上面观察物体所得到的图形叫做俯视图)即可得.【详解】解:由题意得:观察这个立体图形的正面如下:则它的俯视图为故选:C.【点睛】本题考查了三视图,掌握理解俯视图的定义是解题关键.2、C【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】解:从几何体的左面看,是一列两个矩形,矩形的中间用虚线隔开.故选C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.3、A【分析】将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可.【详解】如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点M∵BG//ME//DH∴∠BGA=∠MEC,∠BAG=∠DCE=90°∴,MD=HE∴∴∴CD=CM+DM=1+1.5=2.5故答案选:A.【点睛】本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键.4、D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.【详解】从上方朝下看只有D选项为三角形.故选:D.【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.5、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可.【详解】解:∵AE⊥OD,OG⊥OD,∴AE//OG,∴∠AEB=∠OGB,∠EAB=∠GOB,∴△AEB∽△OGB,∴,即 ,解得:AB=2m;∵OA所在的直线行走到点C时,人影长度增长3米,∴DC=AB+3=5m,OD=OA+AC+CD=AC+10,∵FC∥GO,∴∠CFD=∠OGD,∠FCD=∠GOD,△DFC∽△DGO,∴,即,解得:AC=7.5m.所以小方行走的路程为7.5m.故选择:D.【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键.6、A【分析】根据主视图是从物体的正面看得到的视图即可求解.【详解】解:主视图如下故选:A.【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提.7、C【分析】主视图是从前面先后看得到的图形,根据主视图对各选项一一分析即可.【详解】解:主视图是从前面先后看得到的图形,是C.故选C.【点睛】本题考查主视图,掌握三视图的特征是解题关键.8、C【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【详解】解:、主视图、俯视图都是正方形,故不符合题意;、主视图、俯视图都是矩形,故不符合题意;、主视图是三角形、俯视图是圆形,故符合题意;、主视图、俯视图都是圆,故不符合题意;故选:C.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握从正面看得到的图形是主视图,从上面看得到的图形是俯视图.9、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图.故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.10、A【分析】中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.【详解】解:太阳光线形成的投影是平行投影,探照灯,手电筒,路灯形成的投影是中心投影,故选A【点睛】本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.二、填空题1、x2+4x+3【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+3x=x(x+3),S左=x2+x=x(x+1),∴俯视图的长为x+3,宽为x+1,则俯视图的面积S俯=(x+3)(x+1)=x2+4x+3,故答案为:x2+4x+3.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.2、3【分析】根据所给出的图形可知这个几何体共有2层,2列,先看第一层正方体可能的最少个数,再看第二层正方体的可能的最少个数,相加即可.【详解】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故答案为:3.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3、8【分析】连接,,根据平行投影的性质得,根据平行的性质可知,利用相似三角形对应边成比例即可求出的长.【详解】解:如图,连接AC ,DF,根据平行投影的性质得DF∥AC,,,,,,.故答案为:8.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定定理以及性质是解题的关键.4、【分析】利用三视图得到这个圆锥的高为8mm,底面圆的半径为6mm,再利用勾股定理计算出圆锥的母线长,然后利用扇形的面积公式计算圆锥的侧面积.【详解】解:这个圆锥的高为8mm,底面圆的半径为6mm,所以圆锥的母线长=(mm),所以圆锥的侧面积=(mm2).故答案为:.【点睛】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.也考查了圆锥的计算.5、3【分析】画出模拟俯视图,根据主对列,左对行进行标数,相同取同,不同取0即可得出答案.【详解】已知主视图和左视图求堆积几何体最少的情况:画模拟俯视图,主对列,左对行进行标数,相同取同,不同取0.具体如下图:故答案为:3.【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、解答题1、见解析【分析】从正面看从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右2列正方形的个数依次为2,1;依此画出图形即可.【详解】解:如图所示.【点睛】本题考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.2、图见解析.【分析】根据左视图和俯视图的画法即可得.【详解】解:画图如下:【点睛】本题考查了左视图和俯视图,熟练掌握左视图(是指从左面观察物体所得到的图形)和俯视图(是指从上面观察物体所得到的图形)的画法是解题关键.3、(1)见解析;(2)路灯O与地面的距离为3m【分析】(1)由题意连接 并延长,两条线的交点就是灯光的位置;(2)作OF⊥MN交AB于E,证明△OAB∽△OMN,再利用相似三角形的对应高的比等于相似比建立方程求解即可.【详解】解:(1)如图,点即为为所求; (2)作OF⊥MN交AB于E,如图,AB=m,EF=m,MN=2m,∵,∴△OAB∽△OMN,∴AB:MN=OE:OF, 即,解得OF=3(m).经检验:符合题意答:路灯O与地面的距离为3m.【点睛】本题考查的是中心投影的性质,相似三角形的判定与性质,掌握“相似三角形的对应高的比等于相似比”是解题的关键.4、(1)见解析;(2)路灯高为米【分析】(1)根据投影的特点即可作图;(2)根据图形的特点得到△BAC∽△GDC,故可列出 比例式求解.【详解】(1)如图,为灯泡位置,为小亮影子(2)∵∴△BAC∽△GDC∴即∴GD=4.4米,∴路灯高为米.【点睛】此题主要考查投影与相似的实际应用,解题的关键是熟知相似三角形的判定与性质.5、(1)见解析;(2)5种【分析】(1)由已知条件可知,左视图有2列,每列小正方数形数目分别为3、1,俯视图有3列,每列小正方数形数目分别为2、1、1,据此可画出图形;(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.【详解】(1)画图如下:(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.【点睛】本题考查了几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列以及每一列上的数字.
相关试卷
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试测试题,共17页。试卷主要包含了下列立体图形的主视图是,分别从正面,如图所示的几何体的左视图是等内容,欢迎下载使用。
这是一份初中数学第25章 投影与视图综合与测试当堂达标检测题,共17页。试卷主要包含了如图所示的几何体的主视图为等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课后复习题,共17页。试卷主要包含了如图所示的几何体的左视图是,如图所示的几何体左视图是,如图是下列哪个立体图形的主视图等内容,欢迎下载使用。