所属成套资源:高考数学(理数)二轮复习高考大题专项练AB卷(学生版+教师版)
高考数学(理数)二轮复习高考大题专项练08《不等式选讲》AB卷(教师版)
展开
这是一份高考数学(理数)二轮复习高考大题专项练08《不等式选讲》AB卷(教师版),共8页。试卷主要包含了已知函数f=|x|+|x-3|,若a>0,b>0,且+=等内容,欢迎下载使用。
八 不等式选讲(A)1.已知函数f(x)=|x-2|+|2x+a|,a∈R.(1)当a=1时,解不等式f(x)≥5;(2)若存在x0满足f(x0)+|x0-2|<3,求a的取值范围. 2.已知函数f(x)=|x|+|x-3|.(1)求不等式f(x)<7的解集;(2)证明:当<k<2时,直线y=k(x+4)与函数f(x)的图象可以围成一个四边形. 3.已知函数f(x)=|x-a|+|x+2|.(1)当a=1时,求不等式f(x)≤5的解集;(2)∃x0∈R,f(x0)≤|2a+1|,求a的取值范围. 4.若a>0,b>0,且+=.(1) 求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由. 八 不等式选讲(B)1.已知a>0,b>0,且a+b=1.(1)若ab≤m恒成立,求m的取值范围;(2)若+≥|2x-1|-|x+2|恒成立,求x的取值范围. 2.已知∃x0∈R使得关于x的不等式|x-1|-|x-2|≥t成立.(1)求满足条件的实数t的集合T;(2)若m>1,n>1,且对于∀t∈T,不等式log3m·log3n≥t恒成立,试求m+n的最 小值. 3.已知函数f(x)=|x+1|+|2x-1|.(1)若f(x)≥+(m>0,n>0)对任意x∈R恒成立,求m+n的最小值;(2)若f(x)≥ax-2+a恒成立,求实数a的取值范围. 4.已知函数f(x)=|x-1|+|x-3|.(1)解不等式f(x)≤x+1;(2)设函数f(x)的最小值为c,已知实数a,b满足a>0,b>0,a+b=c,求证:+≥1. 参考答案A卷1.解:(1)当a=1时,f(x)=|x-2|+|2x+1|.由f(x)≥5得|x-2|+|2x+1|≥5.当x≥2时,不等式等价于x-2+2x+1≥5,解得x≥2,所以x≥2;当-<x<2时,不等式等价于2-x+2x+1≥5,解得x≥2,所以此时不等式无解;当x≤-时,不等式等价于2-x-2x-1≥5,解得x≤-,所以x≤-.所以原不等式的解集为{x|x≤-或x≥2}.(2)f(x)+|x-2|=2|x-2|+|2x+a|=|2x-4|+|2x+a|≥|2x+a-(2x-4)|=|a+4|.因为原命题等价于(f(x)+|x-2|)min<3,所以|a+4|<3,解得-7<a<-1,所以实数a的取值范围为(-7,-1).2.(1)解:f(x)=|x|+|x-3|,当x≥3时,f(x)=x+x-3=2x-3,由f(x)<7解得3≤x<5;当0<x<3时,f(x)=x+3-x=3,f(x)<7显然成立,可得0<x<3;当x≤0时,f(x)=-x+3-x=3-2x,由f(x)<7解得-2<x≤0,综上可得,f(x)<7的解集为(-2,5).(2)证明:由f(x)=作出y=f(x)的图象,显然直线y=k(x+4)恒过定点A(-4,0),当直线经过点B(0,3)时,3=4k,解得k=,此时构成三角形;当直线y=k(x+4)与直线y=2x-3平行,可得k=2,可得当<k<2时,直线y=k(x+4)与函数y=f(x)的图象可以围成一个四边形.3.解:(1)当a=1时,f(x)=|x-1|+|x+2|.①当x≤-2时,f(x)=-2x-1,令f(x)≤5,即-2x-1≤5,解得-3≤x≤-2;②当-2<x<1时,f(x)=3;显然f(x)≤5成立,所以-2<x<1;③当x≥1时,f(x)=2x+1,令f(x)≤5,即2x+1≤5,解得1≤x≤2.综上所述,不等式的解集为{x|-3≤x≤2}.(2)因为f(x)=|x-a|+|x+2|≥|(x-a)-(x+2)|=|a+2|,又∃x0∈R,有f(x0)≤|2a+1|成立,所以只需|a+2|≤|2a+1|,所以(a+2)2≤(2a+1)2,化简可得a2-1≥0,解得a≤-1,或a≥1.所以a的取值范围是(-∞,-1]∪[1,+∞).4.解:(1)由=+≥,得ab≥2,且当a=b=时等号成立.故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(2)不存在满足题意的a,b,理由:由(1)知,2a+3b≥2≥4.由于4>6,从而不存在a,b,使得2a+3b=6.参考答案B卷1.解:(1)因为a>0,b>0,且a+b=1,所以ab≤()2=,当且仅当a=b=时“=”成立,由ab≤m恒成立,故m≥.(2)因为a,b∈(0,+∞),a+b=1,所以+=(+)(a+b)=5++≥5+2=9,当且仅当a=2b时取等号,故若+≥|2x-1|-|x+2|恒成立,则|2x-1|-|x+2|≤9,当x≤-2时,不等式化为1-2x+x+2≤9,解得-6≤x≤-2,当-2<x<,不等式化为1-2x-x-2≤9,解得-2<x<,当x≥时,不等式化为2x-1-x-2≤9,解得≤x≤12,综上所述,x的取值范围为[-6,12].2.解:(1)|x-1|-|x-2|≤|x-1-(x-2)|=1,所以|x-1|-|x-2|≤1,所以t的取值范围为(-∞,1],即集合T=(-∞,1].(2)由(1)知,对于∀t∈T,不等式log3m·log3n≥t恒成立,只需log3m·log3n≥tmax,所以log3m·log3n≥1,又因为m>1,n>1,所以log3m>0,log3n>0.又1≤log3m·log3n≤()2=(log3m=log3n时,取等号,此时m=n),所以(log3mn)2≥4,所以log3mn≥2,mn≥9,所以m+n≥2≥6,即m+n的最小值为6(此时m=n=3).3.解:(1)由题意可知,f(x)=函数f(x)的图象如图:由图知f(x)min=,所以+≤,即≤,即m+n≤mn≤()2,当且仅当m=n时等号成立,因为m>0,n>0,解得m+n≥,当且仅当m=n时等号成立,故m+n的最小值为.(2)令g(x)=ax-2+a=a(x+1)-2,其为过定点(-1,-2)的斜率为a的直线,则f(x)≥g(x)表示函数y=f(x)恒在函数y=g(x)图象的上方,由图象可知-3≤a≤.4.(1)解:f(x)≤x+1,即|x-1|+|x-3|≤x+1.①当x<1时,不等式可化为4-2x≤x+1,x≥1.又因为x<1,所以x∈;②当1≤x≤3时,不等式可化为2≤x+1,x≥1.又因为1≤x≤3,所以1≤x≤3.③当x>3时,不等式可化为2x-4≤x+1,x≤5.又因为x>3,所以3<x≤5.综上可得,1≤x≤3,或3<x≤5,即1≤x≤5.所以原不等式的解集为[1,5].(2)证明:由绝对值不等式的性质得,|x-1|+|x-3|≥|(1-x)+(x-3)|=2,即c=2,即a+b=2,令a+1=m,b+1=n,则m>1,n>1,a=m-1,b=n-1,m+n=4,+=+=m+n++-4=≥=1,原不等式得证.
相关试卷
这是一份高考数学(理数)二轮复习高考大题专项练06《导数》AB卷(教师版),共12页。试卷主要包含了已知函数f=ln 等内容,欢迎下载使用。
这是一份高考数学(理数)二轮复习高考大题专项练05《解析几何》AB卷(教师版),共13页。试卷主要包含了给定椭圆C,已知椭圆C等内容,欢迎下载使用。
这是一份高考数学(理数)二轮复习高考大题专项练04《统计概率》AB卷(教师版),共11页。试卷主要包含了某地区高考实行新方案,规定,682 7,,8