![【高频真题解析】2022年河北邯郸永年区中考数学第一次模拟试题(含答案及解析)第1页](http://www.enxinlong.com/img-preview/2/3/12679669/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】2022年河北邯郸永年区中考数学第一次模拟试题(含答案及解析)第2页](http://www.enxinlong.com/img-preview/2/3/12679669/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】2022年河北邯郸永年区中考数学第一次模拟试题(含答案及解析)第3页](http://www.enxinlong.com/img-preview/2/3/12679669/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【高频真题解析】2022年河北邯郸永年区中考数学第一次模拟试题(含答案及解析)
展开
这是一份【高频真题解析】2022年河北邯郸永年区中考数学第一次模拟试题(含答案及解析),共25页。试卷主要包含了已知等腰三角形的两边长满足+,不等式+1<的负整数解有等内容,欢迎下载使用。
2022年河北邯郸永年区中考数学第一次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的有( )①b+c>0;②a+b>a+c;③bc<ac;④ab>ac.A.1个 B.2个 C.3个 D.4个2、下列说法正确的是( )A.的倒数是 B.的绝对值是C.的相反数是 D.x取任意有理数时,都大于03、如图,,点B和点C是对应顶点,,记,当时,与之间的数量关系为( )A. B. C. D.4、已知等腰三角形的两边长满足+(b﹣5)2=0,那么这个等腰三角形的周长为( )A.13 B.14 C.13或14 D.95、如果单项式2a2m﹣5bn+2与ab3n﹣2的和是单项式,那么m和n的取值分别为( )A.2,3 B.3,2 C.﹣3,2 D.3,﹣26、在下列选项的四个几何体中,与其他类型不同的是( )A. B. C. D.7、无论a取什么值时,下列分式总有意义的是( )A. B. C. D.8、不等式+1<的负整数解有( )A.1个 B.2个 C.3个 D.4个9、如图,是的边上的中线,,则的取值范围为( )A. B. C. D.10、如果一个角的余角等于这个角的补角的,那么这个角是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,圆心角∠AOB=20°,将 旋转n°得到,则的度数是______度.2、如图,、是线段上的两点,且是线段的中点.若,,则的长为______.3、妈妈用10000元钱为小明存了6年期的教育储蓄,6年后能取得11728元,这种储蓄的年利率为________%.4、根据下列各式的规律,在横线处填空:,,,,……, -______=_______.5、己知,为锐角的外心,,那么________.三、解答题(5小题,每小题10分,共计50分)1、如图,一高尔夫球从山坡下的点处打出一球,球向山坡上的球洞点处飞去,球的飞行路线为抛物线.如果不考虑空气阻力,当球达到最大高度时,球移动的水平距离为.已知山坡与水平方向的夹角为30°,、两点间的距离为.(1)建立适当的直角坐标系,求这个球的飞行路线所在抛物线的函数表达式.(2)这一杆能否把高尔夫球从点处直接打入点处球洞?2、如图,在平面直角坐标系中,已知抛物线经过点A(2,0)和点,顶点为点D.(1)求直线AB的表达式;(2)求tan∠ABD的值;(3)设线段BD与轴交于点P,如果点C在轴上,且与相似,求点C的坐标.3、如图,是数轴的原点,、是数轴上的两个点,点对应的数是,点对应的数是,是线段上一点,满足.(1)求点对应的数;(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,当点到达点后停留秒钟,然后继续按原速沿数轴向右匀速运动到点后停止.在点从点出发的同时,动点从点出发,以每秒个单位长度的速度沿数轴匀速向左运动,一直运动到点后停止.设点的运动时间为秒.①当时,求的值;②在点,出发的同时,点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,当点与点相遇后,点立即掉头按原速沿数轴向右匀速运动,当点与点相遇后,点又立即掉头按原速沿数轴向左匀速运动到点后停止.当时,请直接写出的值.4、直播购物逐渐走进了人们的生活,某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件,通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件,若将每件商品售价定为x元,日销售量设为y件.(1)求y与x的函数表达式;(2)当x为多少时,每天的销售利润最大?最大利润是多少?5、鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户,当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都会在农历十二月底进行一次性采购.2018年年底小张的“熟客”们共向小张采购了5000箱鱼卷,到2020年底“熟客”们采购了7200箱.(1)求小张的“熟客"们这两年向小张采购鱼卷的年平均增长率;(2)2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的,由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若没有在网上出售鱼卷,则按去年的价格出售,每箱利润为15元,预计销售量与去年持平;若计划在网上出售鱼卷,则需把每箱售价下4至5元,且每下调1元销售量可增加1000箱,求小张在今年年底能获得的最大利润是多少元? -参考答案-一、单选题1、B【详解】试题解析:∵由数轴可得c<0<b<a,且a>|c|>b, ∴①b+c>0,应为b+c<0,故不正确; ②a+b>a+c,正确; ③bc<ac,应为bc>ac,故不正确; ④ab>ac,正确. 共2个正确. 故选B.考点:实数与数轴.2、C【分析】结合有理数的相关概念即可求解【详解】解:A:的倒数是,不符合题意;B:的绝对值是2;不符合题意;C:,5的相反数是,符合题意;D:x取0时,;不符合题意故答案是:C【点睛】本题主要考察有理数的相关概念,即倒数、绝对值及其性质、多重符号化简、相反数等,属于基础的概念理解题,难度不大.解题的关键是掌握相关的概念.3、B【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.【详解】∵,∴,∴,在中,∵,∴,∵,∴,∴,整理得,故选:B.【点睛】本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.4、C【分析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【详解】解:根据题意得,a﹣4=0,b﹣5=0,解得a=4,b=5,①4是腰长时,三角形的三边分别为4、4、5,∵4+4=8>5,∴能组成三角形,周长=4+4+5=13,②4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,所以,三角形的周长为13或14.故选C.【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.5、B【分析】根据题意可知单项式2a2m﹣5bn+2与ab3n﹣2是同类项,结合同类项的定义中相同字母的指数也相同的条件,可得方程组,解方程组即可求得m,n的值.【详解】解:根据题意,得解得m=3,n=2.故选:B.【点睛】同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项.6、B【分析】根据立体图形的特点进行判定即可得到答案.【详解】解:A、C、D是柱体,B是锥体,所以,四个几何体中,与其他类型不同的是B.故选B.【点睛】本题主要考查了立体图形的识别,解题的关键在于能够准确找到立体图形的特点7、D【分析】根据分式有意义的条件是分母不等于零进行分析即可.【详解】解:A、当a=0时,分式无意义,故此选项错误;B、当a=−1时,分式无意义,故此选项错误;C、当a=−1时,分式无意义,故此选项错误;D、无论a为何值,分式都有意义,故此选项正确;故选D.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.8、A【分析】先求出不等式组的解集,再求不等式组的整数解.【详解】去分母得:x﹣7+2<3x﹣2,移项得:﹣2x<3,解得:x.故负整数解是﹣1,共1个.故选A.【点睛】本题考查了不等式的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式,再根据解集求其特殊值.9、C【分析】延长至点E,使,连接,证明,可得,然后运用三角形三边关系可得结果.【详解】如图,延长至点E,使,连接.∵为的边上的中线,∴,在和中,∴,∴.在中,,即,∴,故选:C.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键.10、C【分析】设这个角是,根据题意得,解方程即可.【详解】解:设这个角是,根据题意得,解得x=60,故选:C.【点睛】此题考查角度计算,熟练掌握一个角的余角及补角定义,并正确列得方程解决问题是解题的关键.二、填空题1、20【分析】先根据旋转的性质得,则根据圆心角、弧、弦的关系得到∠DOC=∠AOB=20°,然后根据圆心角的度数等于它所对弧的度数即可得解.【详解】解: ∵将旋转n°得到,∴∴∠DOC=∠AOB=20°,∴的度数为20度.故答案为20.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了旋转的性质.2、.【分析】利用已知得出AC的长,再利用中点的性质得出AD的长.【详解】解:∵AB=10cm,BC=4cm,∴AC=6cm,∵D是线段AC的中点,∴AD=3cm.故答案为:3cm.【点睛】此题主要考查了线段长度的计算问题与线段中点的概念,得出AC的长是解题关键.3、2.88【分析】先设出教育储蓄的年利率为x,然后根据6年后总共能得本利和11728元,列方程求解.【详解】解析:设年利率为,则由题意得,解得.故答案为:【点睛】本题考查了一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4、 【分析】观察不难发现,两个连续自然数的倒数的和减去后一个自然数的一半的倒数,等于这两个自然数的乘积的倒数.【详解】解:∵……∴故答案为:;【点睛】本题是对数字变化规律的考查,比较简单,仔细观察分母的变化找出规律是解决本题的关键.5、【解析】【分析】根据外心的概念及圆周角定理即可求出答案.【详解】∵O是△ABC的外心,∴O为△ABC的外接圆圆心,∵∠BOC是弧BC所对圆心角,∠BAC是弧BC所对圆周角,∴∠BAC=∠BOC=40°,故答案为:40°【点睛】本题考查外心的概念及圆周角定理,外心是三角形外接圆的圆心,同弧所对的圆周角等于圆心角的一半,熟练掌握外心的概念及圆周角定理是解题关键·.三、解答题1、(1)坐标系见解析,y=−x2+x(2)不能【分析】(1)首先根据题意建立平面直角坐标系,分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)求出点A的坐标,把点A的横坐标x=12代入抛物线解析式,看函数值与点A的纵坐标是否相符.(1)建立平面直角坐标系如图,∵顶点B的坐标是(9,12),∴设抛物线的解析式为y=a(x-9)2+12,∵点O的坐标是(0,0)∴把点O的坐标代入得:0=a(0-9)2+12,解得a=−,∴抛物线的解析式为y=−(x-9)2+12即y=−x2+x;(2)在Rt△AOC中,∵∠AOC=30°,OA=8,∴AC=OA•sin30°=8×=4,OC=OA•cos30°=8×=12.∴点A的坐标为(12,4),∵当x=12时,y=,∴这一杆不能把高尔夫球从O点直接打入球洞A点.【点睛】本题考查了二次函数解析式的确定方法,及点的坐标与函数解析式的关系.2、(1)(2)(3)或【分析】(1)根据抛物线经过点A(2,0),可得抛物线解析式为,再求出点B的坐标,即可求解;(2)先求出点D的坐标为 ,然后利用勾股定理逆定理,可得△ABD为直角三角形,即可求解;(3)先求出直线BD的解析式,可得到点P的坐标为 ,然后分两种情况讨论即可求解.(1)解:∵抛物线经过点A(2,0),∴ ,解得: ,∴抛物线解析式为,当 时, ,∴点B的坐标为 ,设直线AB的解析式为 ,把A(2,0),,代入得: ,解得: ,∴直线AB的解析式为;(2)如图,连接BD,AD,∵,∴点D的坐标为 ,∵A(2,0),,∴ ,∴ ,∴△ABD为直角三角形,∴;(3)设直线BD的解析式为 ,把点,代入得: ,解得: ,∴直线BD的解析式为 ,当 时, ,∴点P的坐标为 ,当△ABP∽△ABC时,∠ABC=∠APB,如图,过点B作BQ⊥x轴于点Q,则BQ=3,OQ=1,∵△ABP∽△ABC,∴∠ABD=∠BCQ,由(2)知,∴,∴ ,∴CQ=9,∴OC=OQ+CQ=10,∴点C的坐标为 ;当△ABP∽△ABC时,∠APB=∠ACB,此时点C与点P重合,∴点C的坐标为,综上所述,点C的坐标为或.【点睛】本题主要考查了二次函数的图象和性质,勾股定理逆定理,锐角三角函数,相似三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.3、(1);(2)①,;②或或5.【分析】(1)设点C对应的数为c,先求出AC=c-(-1)=c+1,BC=8-c,根据,变形,即,解方程即可;(2)①点M、N在相遇前,先求出点M表示的数:-1+2t,点N表示的数为:8-t,根据,列方程,点M、N相遇后,求出点M过点C,点M表示的数为-1+2(t-2)=-5+2t,根据,列方程,解方程即可;②点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,先求点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,确定点P与M,N位置,当时,列方程,当点P与点N相遇时,3(t-1)+t-1=7-1解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,根据当时,列方程5.5-3(t-2.5)-4=2{5.5-(t-2.5)-[5.5-3(t-2.5)]},点P与点M再次相遇时,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,列方程,解方程即可.(1)解:设点C对应的数为c,∴AC=c-(-1)=c+1,BC=8-c,∵,∴,即,解得;(2)解:①点M、N在相遇前,点M表示的数:-1+2t,点N表示的数为:8-t,∵,∴,解得,点M、N相遇后,点M过点C,点M表示的数为-1+2(t-2)=-5+2t,∵,∴,解得,∴MN=4时,或;②点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,点M与点P在1位置,点N在7位置,点P掉头,PM=3(t-1)-2(t-1),PN=8-t-1-3 (t-1),当时,,解得,当点P与点N相遇时,3(t-1)+t-1=7-1,解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,当时,5.5-3(t-2.5)-4=2{5.5-(t-2.5)-[5.5-3(t-2.5)]},解得;点P与点M再次相遇时,,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,PM=2(t-2)-1-(-1)=2t-2,PN=8-t-(-1)=9-t,即,解得;综合得当时, 的值为或或5.【点睛】本题考查数轴上动点问题,两点间的距离,列代数式,相遇与追及问题,列方程,分类考虑动点的位置,根据等量关系列方程是解题关键.4、(1)(2)x为55时,每天的销售利润最大,最大利润是450元【分析】(1)原销售量20加上增加的件数即可得到函数表达式;(2)由每件利润乘以销售量得到利润的函数关系式,化为顶点式,利用函数性质解答.(1)解: 件;(2)解:设每个月的销售利润为w元.依题意,得:整理,得:,化成顶点式,得∴当x为55时.每天的销售利润最大,最大利润是450元.【点睛】此题考查了二次函数的实际应用,正确理解题意列出函数关系式,并掌握将二次函数化为顶点式利用函数的性质求最值是解题的关键.5、(1)(2)小张在今年年底能获得的最大利润是元.【分析】(1)设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为则可得方程再解方程即可得到答案;(2)先求解今年的总的销量为箱,设今年总利润为元,价格下调元,则可建立二次函数为,再利用二次函数的性质求解最大值即可.(1)解:设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为 则 整理得: 解得:(负根不合题意舍去)答:小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为(2)解: 2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的, 2020年小张年总销量为:(箱),设今年总利润为元,价格下调元,则 令 则 所以抛物线的对称轴为: 所以函数有最大值, 当时,(元),所以小张在今年年底能获得的最大利润是元.【点睛】本题考查的是一元二次方程的应用,二次函数的应用,掌握“确定相等关系建立一元二次方程,建立二次函数模型”是解本题的关键.
相关试卷
这是一份【难点解析】2022年邯郸永年区中考数学二模试题(含答案及解析),共19页。试卷主要包含了不等式+1<的负整数解有,如图是三阶幻方的一部分,其每行,下列说法等内容,欢迎下载使用。
这是一份【高频真题解析】2022年河北省邯郸市中考数学真题模拟测评 (A)卷(含答案详解),共19页。试卷主要包含了下列说法等内容,欢迎下载使用。
这是一份【高频真题解析】2022年河北省邯郸市中考数学模拟真题 (B)卷(含答案详解),共26页。试卷主要包含了在,,,中,最大的是,若a<0,则= .,已知,,,则,下列各数中,是无理数的是等内容,欢迎下载使用。