【高频真题解析】2022年河北省新乐市中考数学模拟定向训练 B卷(精选)
展开2022年河北省新乐市中考数学模拟定向训练 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,三角形ABC绕点O顺时针旋转后得到三角形,则下列说法中错误的是( )
A. B. C. D.
2、直线上两点的坐标分别是,,则这条直线所对应的一次函数的解析式为( )
A. B. C. D.
3、是-2的( ) .
A.相反数 B.绝对值 C.倒数 D.以上都不对
4、已知三角形的一边长是6 cm,这条边上的高是(x+4)cm,要使这个三角形的面积不大于30 cm2,则x的取值范围是( )
A.x>6 B.x≤6 C.x≥-4 D.-4<x≤6
5、日历表中竖列上相邻三个数的和一定是( ).
A.3的倍数 B.4的倍数 C.7的倍数 D.不一定
6、当n为自然数时,(n+1)2-(n-3)2一定能被下列哪个数整除( )
A.5 B.6 C.7 D.8
7、已知等腰三角形的两边长满足+(b﹣5)2=0,那么这个等腰三角形的周长为( )
A.13 B.14 C.13或14 D.9
8、在中,负数共有( )个.
A.4 B.3 C.2 D.1
9、若a<0,则=( ) .
A.a B.-a C.- D.0
10、点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:(1)b﹣a<0;(2)|a|<|b|;(3)a+b>0;(4)>0.其中正确的是( )
A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、a是不为1的数,我们把称为a的差倒数,如:2的差倒数为;的差倒数是;已知是的差倒数,是的差倒数,是的差倒数,…依此类推,则_____.
2、边长为a、b的长方形,它的周长为14,面积为10,则的值为__.
3、如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为________.
4、将一个圆分割成三个扇形,它们的圆心角度数比为,那么最大扇形的圆心角的度数为________.
5、用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是_____.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:
(1)
(2)
2、在数轴上,表示数m与n的点之间的距离可以表示为|m﹣n|.例如:在数轴上,表示数﹣3与2的点之间的距离是5=|﹣3﹣2|,表示数﹣4与﹣1的点之间的距离是3=|﹣4﹣(﹣1)|.利用上述结论解决如下问题:
(1)若|x﹣5|=3,求x的值;
(2)点A、B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a﹣b|=6(b>a),点C表示的数为﹣2,若A、B、C三点中的某一个点是另两个点组成的线段的中点,求a、b的值.
3、解方程:.
4、已知抛物线.
(1)求证:对任意实数m,抛物线与x轴总有交点.
(2)若该抛物线与x轴交于,求m的值.
5、如图,点O为直线AB上一点,过点О作射线OC,使得,将一个有一个角为30°直角三角板的直角顶点放在点O处,使边ON在射线OA上,另一边OM在直线AB的下方,将图中的三角板绕点О按顺时针方向旋转180°.
(1)三角板旋转的过程中,当时,三角板旋转的角度为 ;
(2)当ON所在的射线恰好平分时,三角板旋转的角度为 ;
(3)在旋转的过程中,与的数量关系为 ;(请写出所有可能情况)
(4)若三角板绕点О按每秒钟20°的速度顺时针旋转,同时射线OC绕点О按每秒钟5°的速度沿顺时针方向,向终边OB运动,当ON与射线OB重合时,同时停止运动,直接写出三角板的直角边所在射线恰好平分时,三角板运动时间为 .
-参考答案-
一、单选题
1、A
【分析】
根据点O没有条件限定,不一定在AB的垂直平分线上,可判断A,根据性质性质可判断B、C、D.
【详解】
解:A.当点O在AB的垂直平分线上时,满足OA=OB,由点O没有限制条件,为此点O为任意的,不一定在AB的垂直平分线上,故选项A不正确,符合题意;
B.由旋转可知OC与OC′是对应线段,由旋转性质可得OC=OC′,故选项B正确,不符合题意;
C.因为、都是旋转角,由旋转性质可得,故选项C正确,不符合题意;
D.由旋转可知与是对应角,由性质性质可得,故选项D正确,不符合题意.
故选择A.
【点睛】
本题考查线段垂直平分线性质,图形旋转及其性质,掌握线段垂直平分线性质,图形旋转及其性质是解题关键.
2、A
【分析】
利用待定系数法求函数解析式.
【详解】
解:∵直线y=kx+b经过点P(-20,5),Q(10,20),
∴ ,
解得,
所以,直线解析式为.
故选A.
【点睛】
本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法.
3、D
【分析】
根据相反数、绝对值、倒数的定义进行解答即可.
【详解】
解:,-2的相反数是2,-2的绝对值是2,-2的倒数是-,
所以以上答案都不对.
故选D.
【点睛】
本题考查相反数、绝对值、倒数,掌握相反数、绝对值、倒数的定义是解题的关键..
4、D
【解析】
【分析】
根据三角形面积公式列出不等式组,再解不等式组即可.
【详解】
由题意得:,解得:-4<x≤6.
故选D.
【点睛】
本题考查了一元一次不等式组的应用.解题的关键是利用三角形的面积公式列出不等式组.
5、A
【分析】
设中间的数字为x,表示出前一个与后一个数字,求出和即可做出判断.
【详解】
解:设日历中竖列上相邻三个数的中间的数字为x,则其他两个为x-7,x+7,
则三个数之和为x-7+x+x+7=3x,即三数之和为3的倍数.
故选:A.
【点睛】
本题考查列代数式,解题的关键是知道日历表中竖列上相邻三个数的特点.
6、D
【分析】
用平方差公式进行分解因式可得.
【详解】
∵(n+1)2﹣(n﹣3)2=(n+1+n﹣3)(n+1﹣n+3)=8(n﹣1),且n为自然数,∴(n+1)2﹣(n﹣3)2能被8整除.
故选D.
【点睛】
本题考查了因式分解的应用,关键是能用平方差公式熟练分解因式.
7、C
【分析】
首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.
【详解】
解:根据题意得,a﹣4=0,b﹣5=0,
解得a=4,b=5,
①4是腰长时,三角形的三边分别为4、4、5,
∵4+4=8>5,
∴能组成三角形,周长=4+4+5=13,
②4是底边时,三角形的三边分别为4、5、5,
能组成三角形,周长=4+5+5=14,
所以,三角形的周长为13或14.
故选C.
【点睛】
本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.
8、A
【分析】
首先将各数化简,然后根据负数的定义进行判断.
【详解】
解:∵-(-8)=8,,,-|-1|=-1,-|0|=0,,
∴负数共有4个.
故选A.
【点睛】
此题考查的知识点是正数和负数,关键是判断一个数是正数还是负数,要把它化简成最后形式再判断.负数是指小于0的数,注意0既不是正数,也不是负数.
9、B
【分析】
根据负数的绝对值等于它的相反数,即可解答.
【详解】
解:∵a<0,
∴|a|=-a.
故选:B .
【点睛】
本题考查绝对值,解题的关键是熟记负数的绝对值等于它的相反数.
10、B
【分析】
根据图示,判断a、b的范围:﹣3<a<0,b>3,根据范围逐个判断即可.
【详解】
解:根据图示,可得﹣3<a<0,b>3,
∴(1)b﹣a>0,故错误;
(2)|a|<|b|,故正确;
(3)a+b>0,故正确;
(4)<0,故错误.
故选B.
【点睛】
此题主要考查了绝对值的意义和有理数的运算符号的判断,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.
二、填空题
1、
【分析】
根据题意,可以写出这列数的前几个数,从而可以发现数字的变化特点,进而得到a2019的值.
【详解】
解:,是的差倒数,
即,是的差倒数,
即,是的差倒数,
即,
…
依此类推,∵,
∴.
故答案为:.
【点睛】
本题考查数字的变化类、新定义,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值.
2、70
【分析】
直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可.
【详解】
解:依题意:2a+2b=14,ab=10,
则a+b=7
∴a2b+ab2=ab(a+b)=70;
故答案为:70
【点睛】
此题主要考查了提取公因式法分解因式,正确得出a+b和ab的值是解题关键.
3、π
【分析】
根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.
【详解】
如图,连接CO,
∵AB=BC,CD=DE,
∴∠BOC+∠COD=∠AOB+∠DOE=90°,
∵AE=4,
∴AO=2,
∴S阴影==π.
【点睛】
本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.
4、
【分析】
根据它们的圆心角的度数和为周角,则利用它们所占的百分比计算它们的度数.
【详解】
最大扇形的圆心角的度数=360°×=200°.
故答案为200°.
【点睛】
本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
5、2
【详解】
解:扇形的弧长==2πr,
∴圆锥的底面半径为r=2.
故答案为2.
三、解答题
1、
(1)
(2)
【分析】
(1)方程去括号、移项合并同类项,把x的系数化为1,即可求出解;
(2)方程去分母、去括号、移项合并同类项,把x的系数化为1,即可求出解.
(1)
解:去括号得:
移项、合并同类项得:
系数化为1,得:
(2)
解:去分母得:
去括号得:
移项、合并同类项得:
系数化为1,得:
【点睛】
本题考查解一元一次方程,解题的关键是掌握一元一次方程的解法,解一元一次方程常见的过程有:去分母、去括号、移项、合并同类项、系数化为1等.
2、
(1)x=8或x=2
(2)a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8
【分析】
(1)根据两点间的距离公式和绝对值的意义,可得答案;
(2)分类讨论:①C是AB的中点,②当点A为线段BC的中点,③当点B为线段AC的中点,根据线段中点的性质,可得答案.
(1)
解:因为|x﹣5|=3,
所以x﹣5=3或x﹣5=﹣3,
解得x=8或x=2;
(2)
因为|a﹣b|=6(b>a),所以在数轴上,点B与点A之间的距离为6,且点B在点A的右侧.
①当点C为线段AB的中点时,
如图1所示,.
∵点C表示的数为﹣2,
∴a=﹣2﹣3=﹣5,b=﹣2+3=1.
②当点A为线段BC的中点时,
如图2所示,AC=AB=6.
∵点C表示的数为﹣2,
∴a=﹣2+6=4,b=a+6=10.
③当点B为线段AC的中点时,
如图3所示,BC=AB=6.
∵点C表示的数为﹣2,
∴b=﹣2﹣6=﹣8,a=b﹣6=﹣14.
综上,a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8.
【点睛】
本题考查了数轴上两点间的距离,线段的中点,以及一元一次方程的应用,注意数轴上到一点距离相等的点有两个,分类讨论是解(2)题关键.
3、
【分析】
方程两边同时乘以12,去分母后,依次计算即可.
【详解】
∵,
去分母,得
3(2x+1)-2(x-3)=12,
去括号,得
6x+3-2x+6=12,
移项,得
6x-2x=12-3-6,
合并同类项,得
4x=3,
系数化为1,得
x=.
【点睛】
本题考查了一元一次方程的解法,熟练掌握五步骤解一元一次方程是解题的关键.
4、
(1)见解析
(2)
【分析】
(1)令,得到关于的一元二次方程,根据一元二次方程根的判别式判断即可;
(2)令,,解一元二次方程即可求得的值
(1)
令,则有
即,对于任意实数方程总有两个实数根,
对任意实数m,抛物线与x轴总有交点.
(2)
解:∵抛物线与x轴交于,
∴
解得
【点睛】
本题考查了二次函数与坐标轴交点问题,掌握一元二次方程根的判别式以及解一元二次方程是解题的关键.
5、
(1)90°;
(2)150°;
(3)当0°≤∠AON≤90°时,∠CON-∠AOM =30°,当90°<∠AON≤120°时∠AOM+∠CON=30°,当120°<∠AON≤180°时,∠AOM-∠CON=30°;
(4)秒或秒.
【分析】
(1)根据,求出旋转角∠AON=90°即可;
(2)根据,利用补角性质求出∠BOC=60°,根据ON所在的射线恰好平分,得出∠OCN=,再求出旋转角即可;
(3)分三种情况当0°≤∠AON≤90°时,求出∠AOM=90°-∠AON,∠CON=120°-∠AON,两角作差;当90°<∠AON≤120°时,求两角之和;当120°<∠AON≤180°时,求出∠AOM=120°-∠MOC,∠CON=90°-∠MOC,再求两角之差即可
(4)设三角板运动的时间为t秒,当ON平分∠AOC时,根据∠AOC的半角与旋转角相等,列方程,,当OM平分∠AOC时,根据∠AOC的半角+90°与旋转角相等,列方程,解方程即可.
(1)
解:∵ON在射线OA上,三角板绕点О按顺时针方向旋转,,
∴旋转角∠AON=90°,
∴三角板绕点О按顺时针方向旋转90°,
故答案为:90°;
(2)
解:∵,
∴∠BOC=180°-∠AOC=180°-120°=60°,
∵ON所在的射线恰好平分,
∴∠OCN=,
∴旋转角∠AON=∠AOC+∠CON=120°+30°=150°,
故答案为:150°;
(3)
当0°≤∠AON≤90°时
∵∠AOM=90°-∠AON,∠CON=120°-∠AON,
∴∠CON-∠AOM =120°-∠AON-(90°-∠AON)=30°,
当90°<∠AON≤120°时
∠AOM+∠CON=∠AOC-∠MON=120°-90°=30°,
当120°<∠AON≤180°时
∠AOM=120°-∠MOC,∠CON=90°-∠MOC,
∴∠AOM-∠CON=30°,
故答案为:当0°≤∠AON≤90°时,∠CON-∠AOM =30°,当90°<∠AON≤120°时∠AOM+∠CON=30°,当120°<∠AON≤180°时,∠AOM-∠CON=30°;
(4)
设三角板运动的时间为t秒,∠AOC=120+5t,OD平分∠AOC,
∴∠AOD=,
∠AON=20t,
∴当ON平分∠AOC时,,
解得:秒;
当OM平分∠AOC时,,
解得秒.
∴三角板运动时间为秒或秒.
故答案为秒或秒.
【点睛】
本题考查旋转性质,补角性质,角平分线定义,分类讨论思想的应用,图形中的角度计算,利用角平分线分得的角,和旋转角的关系列方程,掌握旋转性质,补角性质,角平分线定义,分类讨论思想的应用,图形中的角度计算,利用角平分线分得的角,和旋转角的关系列方程是解题关键.
【真题汇总卷】2022年中考数学模拟定向训练 B卷(精选): 这是一份【真题汇总卷】2022年中考数学模拟定向训练 B卷(精选),共21页。试卷主要包含了若,则的值是,观察下列图形,下列关于整式的说法错误的是,下列计算正确的是,一组样本数据为1等内容,欢迎下载使用。
【真题汇编】2022年河北省新乐市中考数学模拟定向训练 B卷(含答案及解析): 这是一份【真题汇编】2022年河北省新乐市中考数学模拟定向训练 B卷(含答案及解析),共21页。试卷主要包含了在中,负数共有个.,把 写成省略括号后的算式为,若,则的值为等内容,欢迎下载使用。
【高频真题解析】中考数学模拟定向训练 B卷(精选): 这是一份【高频真题解析】中考数学模拟定向训练 B卷(精选),共22页。试卷主要包含了若分式有意义,则的取值范围是,计算3.14-的结果为 .等内容,欢迎下载使用。