【历年真题】2022年河北省石家庄市中考数学考前摸底测评 卷(Ⅱ)(含详解)
展开2022年河北省石家庄市中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、计算-1-1-1的结果是( )
A.-3 B.3 C.1 D.-1
2、如果单项式2a2m﹣5bn+2与ab3n﹣2的和是单项式,那么m和n的取值分别为( )
A.2,3 B.3,2 C.﹣3,2 D.3,﹣2
3、在中,负数共有( )个.
A.4 B.3 C.2 D.1
4、计算的值为( )
A. B. C.82 D.178
5、如图①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②.这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是( )
A.60 B.100 C.125 D.150
6、甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为( )
A.= B.=
C.= D.=
7、若分式有意义,则的取值范围是( )
A. B. C. D.
8、下列变形中,正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
9、关于x,y的方程组的解满足x+y<6,则m的最小整数值是( )
A.-1 B.0 C.1 D.2
10、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x元,根据题意列方程为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知的平方根是,则m=______.
2、如图,若满足条件________,则有AB∥CD,理由是_________________________.(要求:不再添加辅助线,只需填一个答案即可)
3、下列4个分式:①;②;③ ;④,中最简分式有_____个.
4、数学组活动,老师带领学生去测塔高,如图,从点测得塔顶的仰角为,测得塔基的仰角为,已知塔基高出测量仪,(即),则塔身的高为________米.
5、如图,在高米,坡角为的楼梯表面铺地毯,地毯的长度至少需要________米.(精确到米)
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,抛物线y=x2+bx+c过点A(0,﹣1),B(3,2).直线AB交x轴于点C.
(1)求抛物线的函数表达式;
(2)点P是直线AB下方抛物线上的一个动点.连接PA、PC,当△PAC的面积取得最大值时,求点P的坐标和△PAC面积的最大值;
(3)把抛物线y=x2+bx+c沿射线AB方向平移个单位形成新的抛物线,M是新抛物线上一点,并记新抛物线的顶点为点D,N是直线AD上一点,直接写出所有使得以点B,C,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来.
2、如图,在平面直角坐标系xOy中,抛物线与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,顶点为点D.
(1)求该抛物线的表达式及点C的坐标;
(2)联结BC、BD,求∠CBD的正切值;
(3)若点P为x轴上一点,当△BDP与△ABC相似时,求点P的坐标.
3、如图,二次函数y=a(x﹣1)2﹣4a(a≠0)的图像与x轴交于A,B两点,与y轴交于点C(0,﹣).
(1)求二次函数的表达式;
(2)连接AC,BC,判定△ABC的形状,并说明理由.
4、已知抛物线的顶点为,且过点.
(1)求抛物线的解析式;
(2)将抛物线先向左平移2个单位长度,再向下平移个单位长度后得到新抛物线.
①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且,求m的值;
②若,是新抛物线上的两点,当时,均有,请直接写出n的取值范围.
5、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,用某二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间r(月)之间的关系(即前t个月的利润总和s与t之间的关系).
(1)由已知图象上的三点坐标,,,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元.
-参考答案-
一、单选题
1、A
【分析】
根据有理数的减法法则计算.
【详解】
解:-1-1-1=-1+(-1)+(-1)=-3.
故选:A.
【点睛】
本题考查有理数的减法.有理数减法法则:减去一个数等于加上这个数的相反数.
2、B
【分析】
根据题意可知单项式2a2m﹣5bn+2与ab3n﹣2是同类项,结合同类项的定义中相同字母的指数也相同的条件,可得方程组,解方程组即可求得m,n的值.
【详解】
解:根据题意,得
解得m=3,n=2.
故选:B.
【点睛】
同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项.
3、A
【分析】
首先将各数化简,然后根据负数的定义进行判断.
【详解】
解:∵-(-8)=8,,,-|-1|=-1,-|0|=0,,
∴负数共有4个.
故选A.
【点睛】
此题考查的知识点是正数和负数,关键是判断一个数是正数还是负数,要把它化简成最后形式再判断.负数是指小于0的数,注意0既不是正数,也不是负数.
4、D
【分析】
根据有理数的混合运算计算即可;
【详解】
解:.
故选D.
【点睛】
本题主要考查了含有乘方的有理数混合运算,准确计算是解题的关键.
5、B
【分析】
分析图形变化过程中的等量关系,求出变化后的长方形Ⅱ部分的长和宽即可.
【详解】
解:如图:
∵拼成的长方形的长为(a+b),宽为(a-b),
∴,解得a=25,b=5,
∴长方形Ⅱ的面积=b(a-b)=5×(25-5)=100.
故选B.
【点睛】
本题考查了完全平方公式(a+b)2=a2+2ab+b2的几何背景,解题的关键是找出图形等积变化过程中的等量关系.
6、A
【详解】
分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.
详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.
故选A.
点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.
7、A
【解析】
试题解析:根据题意得:3-x≠0,
解得:x≠3.
故选A.
考点:分式有意义的条件.
8、B
【分析】
根据等式的性质,对选项逐个判断即可.
【详解】
解:选项A,若,当时,不一定成立,故错误,不符合题意;
选项B,若,两边同时除以,可得,正确,符合题意;
选项C,将分母中的小数化为整数,得,故错误,不符合题意;
选项D,方程变形为,故错误,不符合题意;
故选B.
【点睛】
此题考查了等式的性质,熟练掌握等式的有关性质是解题的关键.
9、B
【解析】
【分析】
先解方程组,得出x,y的值,再把它代入x+y<6即可得出m的范围.由此即可得出结论.
【详解】
解方程组,得:.
∵x+y<6,∴5m﹣2+(4﹣9m)<6,解得:m>﹣1,∴m的最小整数值是0.
故选B.
【点睛】
本题考查了二元一次方程组的解以及求一元一次不等式的整数解,解答此题的关键是解方程组.
10、C
【分析】
首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程.
【详解】
首先设甲种陀螺单价为x元,则乙种陀螺单价为元,
根据题意可得:,
故选:C.
【点睛】
本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程.
二、填空题
1、7
【分析】
分析题意,此题运用平方根的概念即可求解.
【详解】
因为2m+2的平方根是±4,
所以2m+2=16,解得:m=7.
故答案为:7.
【点睛】
本题考查平方根.
2、答案不唯一,如; 同位角相等,两直线平行.
【分析】
根据平行线的判定(同位角相等、内错角相等或同旁内角互补)写出一组条件即可.
【详解】
若根据同位角相等,判定可得:
∵,
∴AB//CD(同位角相等,两直线平行).
故答案是:答案不唯一,如; 同位角相等,两直线平行.
【点睛】
考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,再根据平行线的判定定理(同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行)解题.
3、①④
【分析】
根据最简分式的定义逐式分析即可.
【详解】
①是最简分式;②=,不是最简分式 ;③=,不是最简分式;④是最简分式.
故答案为2.
【点睛】
本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.
4、
【分析】
易得BC长,用BC表示出AC长,AC﹣CD=AD.
【详解】
△ABC中,AC=BC.
△BDC中有DC=BC=20,∴AD=AC﹣DC=BC﹣BC=20(﹣1)米.
故答案为20(﹣1).
【点睛】
本题考查了仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.
5、
【分析】
首先利用锐角三角函数关系得出AC的长,再利用平移的性质得出地毯的长度.
【详解】
由题意可得:tan27°==≈0.51,解得:AC≈3.9,故AC+BC=3.9+2=5.9(m),即地毯的长度至少需要5.9米.
故答案为5.9.
【点睛】
本题主要考查了解直角三角形的应用,得出AC的长是解题的关键.
三、解答题
1、
(1)
(2),
(3)或,或,
【分析】
(1)先由抛物线过点求出的值,再由抛物线经过点求出的值即可;
(2)作轴,交直线于点,作于点,设直线的函数表达式为,由直线经过点求出直线的函数表示式,设,则,可证明,于是可以用含的代数式表示、的长,再将的面积用含的代数式表示,根据二次函数的性质即可求出的面积的最大值及点的坐标;
(3)先由沿射线方向平移个单位相当于向右平移1个单位,再向上平移1个单位,说明抛物线沿射线方向平移个单位也相当于向右平移1个单位,再向上平移1个单位,根据平移的性质求出新抛物线的函数表达式,再按以为对角线或以为一边构成平行四边形分类讨论,求出点的坐标.
【小题1】
解:抛物线过点,
,
,
抛物线经过点,
,
解得,
抛物线的函数表达式为.
【小题2】
如图1,作轴,交直线于点,作于点,
则,
设直线的函数表达式为,则,
解得,
直线的函数表达式为,
当时,则,解得,
,
,,
,,
轴,
,
,
,
,
,
设,则,
,
,
,
当时,,此时,,
点的坐标为,,面积的最大值为.
【小题3】
如图2,将沿射线方向平移个单位,则点的对应点与点重合,得到,
,
,,
相当于向右平移1个单位,再向上平移1个单位,
抛物线沿射线方向平移个单位也相当于向右平移1个单位,再向上平移1个单位,
,
平移后得到的抛物线的函数表达式为,
即,它的顶点为,
轴,
设直线与抛物线交于点,由平移得,,
,,,
为的中点,
,,
当以,,,为顶点平行四边形以为对角线时,
设抛物线交轴于点,作直线交轴于点,
当时,,
,
延长交轴于点,则,,
,,
,,
,
,
,
,
,
,
四边形是平行四边形,
是以,,,为顶点平行四边形的顶点;
若点与点重合,点与点重合,也满足,,
但此时点、、、在同一条直线上,
构不成以点、、、为顶点平行四边形;
如图3,以,,,为顶点的平行四边形以为一边,
抛物线,当时,则,
解得,,
抛物线经过点,
设抛物线与轴的另一个交点为,则,
作于点,连接,则轴,
,
,
,,
,
,
点的纵坐标为1,
当时,则,
解得,,
点的坐标为,或,,
综上所述,点的坐标为或,或,.
【点睛】
此题重点考查二次函数的图象与性质、一次函数的图象与性质、全等三角形的判定与性质、平行四边形的判定、勾股定理、解一元二次方程等知识与方法,解题时应注意数形结合、分类讨论等数学思想的运用.
2、
(1),点C的坐标为(0,-3)
(2)
(3)(-3,0)或(-,0)
【分析】
(1)把A、B两点坐标代入函数求出b,c的值即可求函数表达式;再令x=0,求出y从而求出C点坐标;
(2)先求B、C、D三点坐标,再求证△BCD为直角三角形,再根据正切的定义即可求出;
(3)分两种情况分别进行讨论即可.
(1)
解:(1)将A(-1,0)、B(3,0)代入,得
解得:
所以,.
当x=0时,.∴点C的坐标为(0,-3).
(2)
解:连接CD,过点D作DE⊥y轴于点E,
∵,
∴点D的坐标为(1,-4).
∵B(3,0)、C(0,-3)、D(1,-4),E(0,-4),
∴OB=OC=3,CE=DE=1,
∴BC=,DC=,BD=.
∴.
∴∠BCD=90°.
∴tan∠CBD=.
(3)
解:∵tan∠ACO=,
∴∠ACO=∠CBD.
∵OC =OB,
∴∠OCB=∠OBC=45°.
∴∠ACO+∠OCB =∠CBD+∠OBC.
即:∠ACB =∠DBO.
∴当△BDP与△ABC相似时,点P在点B左侧.
(i)当时,
∴.
∴BP=6.
∴P(-3,0).
(ii)当时,
∴.
∴BP=.
∴P(-,0).
综上,点P的坐标为(-3,0)或(-,0).
【点睛】
本题是二次函数的综合题,掌握相关知识是解题的关键.
3、
(1);
(2)直角三角形,理由见解析.
【分析】
(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;
(2)令,求出x的值,即得出A、B两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断的形状.
(1)
解:将点C代入函数解析式得:,
解得:,
故该二次函数表达式为:.
(2)
解:令,得:,
解得:,.
∴A点坐标为(-1,0),B点坐标为(3,0).
∴OA=1,OC=,,
∴,
.
∵,即,
∴的形状为直角三角形.
【点睛】
本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C的坐标求出函数解析式是解答本题的关键.
4、
(1)
(2)①②
【分析】
(1)二次函数的顶点式为,将点坐标代入求解的值,回代求出解析式的表达式;
(2)①平移后的解析式为,可知对称轴为直线,设点坐标到对称轴距离为,有点坐标到对称轴距离为,,,可得,解得,可知点坐标为,将坐标代入解析式解得的值即可;②由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,知,解得,由时,均有可得计算求解即可
(1)
解:∵的顶点式为
∴由题意得
解得(舍去),,,
∴抛物线的解析式为.
(2)
解:①平移后的解析式为
∴对称轴为直线
∴设点坐标到对称轴距离为,点坐标到对称轴距离为
∴,
∵
∴
解得
∴点坐标为
将代入解析式解得
∴的值为8.
②解:由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,
∴
解得
∵时,均有
∴
解得
∴的取值范围为.
【点睛】
本题考查了二次函数的解析式、图象的平移与性质、与x轴的交点坐标等知识.解题的关键在于对二次函数知识的熟练灵活把握.
5、
(1)
(2)截止到10月末公司累积利润可达到30万元.
【分析】
(1)设,把,,代入,再列方程组解方程组可得答案;
(2)把代入,再解方程并检验即可得到答案.
(1)
解:设,把,,代入可得:
解得:
所以二次函数为:
(2)
解:把代入可得:
整理得:
解得:
经检验:不符合题意;
所以截止到10月末公司累积利润可达到30万元.
【点睛】
本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,掌握“待定系数法求解二次函数的解析式”是解本题的关键.
【历年真题】2022年河北石家庄市晋州市中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【历年真题】2022年河北石家庄市晋州市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共20页。试卷主要包含了已知,,,则等内容,欢迎下载使用。
【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解),共39页。试卷主要包含了若,则下列不等式正确的是,把 写成省略括号后的算式为,下列说法中正确的个数是,某玩具店用6000元购进甲,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】2022年唐山迁安市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解): 这是一份【历年真题】2022年唐山迁安市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共26页。试卷主要包含了下列说法正确的是.,使分式有意义的x的取值范围是,计算3.14-的结果为 .等内容,欢迎下载使用。