【历年真题】2022年河北省沧州市中考数学模拟专项测试 B卷(含答案及解析)
展开2022年河北省沧州市中考数学模拟专项测试 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不等式+1<的负整数解有( )
A.1个 B.2个 C.3个 D.4个
2、数轴上到点-2的距离为4的点有( ).
A.2 B.-6或2 C.0 D.-6
3、如图,,点B和点C是对应顶点,,记,当时,与之间的数量关系为( )
A. B. C. D.
4、如图,在数轴上有三个点A、B、C,分别表示数,,5,现在点C不动,点A以每秒2个单位长度向点C运动,同时点B以每秒个单位长度向点C运动,则先到达点C的点为( )
A.点A B.点B C.同时到达 D.无法确定
5、甲、乙两名学生的十次数学竞赛训练成绩的平均分分别是和,成绩的方差分别是和,现在要从两人中选择发挥稳定的一人参加数学竞赛,下列说法正确的是( )
A.甲、乙两人平均分相当,选谁都可以
B.乙的平均分比甲高,选乙
C.乙的平均分和方差都比甲高,成绩比甲稳定,选乙
D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲
6、下列说法中正确的个数是( )
①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段;⑤若,则点为线段的中点;⑥不相交的两条直线叫做平行线。
A.个 B.个 C.个 D.个
7、当n为自然数时,(n+1)2-(n-3)2一定能被下列哪个数整除( )
A.5 B.6 C.7 D.8
8、把 写成省略括号后的算式为 ( )
A. B.
C. D.
9、关于x,y的方程组的解满足x+y<6,则m的最小整数值是( )
A.-1 B.0 C.1 D.2
10、如图,将三角形绕点A旋转到三角形,下列说法正确的个数有( )
(1);(2);(3);(4).
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知的平方根是,则m=______.
2、已知,则a=_____, b=________.
3、(1)定义“*”是一种运算符号,规定,则=________.
(2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要___________________ 元.
4、a是不为1的数,我们把称为a的差倒数,如:2的差倒数为;的差倒数是;已知是的差倒数,是的差倒数,是的差倒数,…依此类推,则_____.
5、若直角三角形的两条直角边长分别为cm,cm,则这个直角三角形的斜边长为________cm,面积为________ .
三、解答题(5小题,每小题10分,共计50分)
1、如图,二次函数的图象顶点坐标为(-1,-2),且过(1,0).
(1)求该二次函数解析式;
(2)当时,则函数值y得取值范围是 .
2、一个三位数m,将m的百位数字和十位数字相加,所得数的个位数字放在m之后,得到的四位数称为m的“如虎添翼数”.将m的“如虎添翼数”的任意一个数位上的数字去掉后可以得到四个新的三位数,把四个新的三位数的和与3的商记为.例如:,∵,∴297的如虎添翼数n是2971,将2971的任意一个数位上的数字去掉后可以得到四个新的三位数:971、271、291、297,则.
(1)258的如虎添翼数是____________,___________.
(2)证明任意一个十位数字为0的三位数M,它的“如虎添翼数”与M的个位数字之和能被11整除.
(3)一个三位数(且),它的“如虎添翼数”t能被17整除,求的最大值.
3、如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且,,,抛物线的对称轴与直线BC交于点M,与x轴交于点N.
(1)求抛物线的解析式;
(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与相似?若存在,求出点P的坐标,若不存在,请说明理由.
(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.
4、如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OM恰好平分.
①t的值是_________;
②此时ON是否平分?说明理由;
(2)在(1)的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由;
(3)在(2)的基础上,经过多长时间,?请画图并说明理由.
5、如图,在矩形ABCD中,,,E是CD边上的一点,,M是BC边的中点,动点P从点A出发.沿边AB以的速度向终点B运动,过点P作于点H,连接EP.设动点P的运动时间是.
(1)当t为何值时,?
(2)设的面积为,写出与之间的函数关系式.
(3)当EP平分四边形PMEH的面积时,求t的值.
(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由.
-参考答案-
一、单选题
1、A
【分析】
先求出不等式组的解集,再求不等式组的整数解.
【详解】
去分母得:x﹣7+2<3x﹣2,移项得:﹣2x<3,解得:x.
故负整数解是﹣1,共1个.
故选A.
【点睛】
本题考查了不等式的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式,再根据解集求其特殊值.
2、B
【分析】
分点在点-2的左边和右边两种情况讨论求解.
【详解】
解:点在点-2的左边时,为-2-4=-6,
点在点-2的右边时,为-2+4=2,
所以,在数轴上到点-2的距离是4的点所表示的数是-6或2.
故选:B.
【点睛】
本题考查数轴,注意:此题要分为两种情况:在表示-2点的左边和右边.
3、B
【分析】
根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.
【详解】
∵,
∴,
∴,
在中,
∵,
∴,
∵,
∴,
∴,整理得,
故选:B.
【点睛】
本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
4、A
【分析】
先分别计算出点A与点C之间的距离为10,点B与点C之间的距离为8.5,再分别计算出所用的时间.
【详解】
解:点A与点C之间的距离为:,
点B与点C之间的距离为:,
点A以每秒2个单位长度向点C运动,所用时间为(秒);
同时点B以每秒个单位长度向点C运动,所用时间为(秒);
故先到达点C的点为点A,
故选:A.
【点睛】
本题考查了数轴,解决本题的关键是计算出点A与点C,点B与点C之间的距离.
5、D
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵甲的平均分是115,乙的平均分是116,∴甲、乙两人平均分相当.
∵甲的方差是8.5,乙的方差是60.5,∴甲的方差小,成绩比乙稳定,选甲;
∴说法正确的是D.
故选D.
【点睛】
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6、D
【分析】
本题属于基础应用题,只需学生熟练掌握平面图形的基本概念,即可完成.
【详解】
①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④两点之间线段的长度,叫做这两点之间的距离,故本小题错误;
⑤若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误;
⑥在同一平面内,不相交的两条直线叫做平行线,故本小题错误;
所以,正确的结论有①,共1个.
故选D.
【点睛】
熟练掌握平面图形的基本概念
7、D
【分析】
用平方差公式进行分解因式可得.
【详解】
∵(n+1)2﹣(n﹣3)2=(n+1+n﹣3)(n+1﹣n+3)=8(n﹣1),且n为自然数,∴(n+1)2﹣(n﹣3)2能被8整除.
故选D.
【点睛】
本题考查了因式分解的应用,关键是能用平方差公式熟练分解因式.
8、D
【分析】
先把算式写成统一加号和的形式,再写成省略括号的算式即可.
【详解】
把统一加号和,
再把写成省略括号后的算式为 5-3+1-5.
故选:D.
【点睛】
本题考查有理数加减法统一加法的问题,掌握加减法运算的法则,会用减法法则把减法装化为加法,会写省略括号的算式是解题关键.
9、B
【解析】
【分析】
先解方程组,得出x,y的值,再把它代入x+y<6即可得出m的范围.由此即可得出结论.
【详解】
解方程组,得:.
∵x+y<6,∴5m﹣2+(4﹣9m)<6,解得:m>﹣1,∴m的最小整数值是0.
故选B.
【点睛】
本题考查了二元一次方程组的解以及求一元一次不等式的整数解,解答此题的关键是解方程组.
10、C
【分析】
图形旋转前后的对应边相等,对应角相等,根据旋转的性质解答.
【详解】
解:据旋转的性质,可知:,故(1)错误;
,故(2)正确;
,故(3)正确;
,故(4)正确.
故选:C.
【点睛】
此题考查旋转的性质:图形旋转前后的对应边相等,对应角相等,熟记性质是解题的关键.
二、填空题
1、7
【分析】
分析题意,此题运用平方根的概念即可求解.
【详解】
因为2m+2的平方根是±4,
所以2m+2=16,解得:m=7.
故答案为:7.
【点睛】
本题考查平方根.
2、2 2
【分析】
先根据异分母分式的加法法则计算,再令等号两边的分子相等即可.
【详解】
解:∵,
∴,
∴a(x−2)+b(x+2)=4x,即(a+b)x−2(a−b)=4x,
∴a+b=4,a-b=0,
∴a=b=2,
故答案为:2,2.
【点睛】
本题考查的是分式的加减法,在解答此类问题时要注意通分的应用.
3、2019; 800.
【分析】
(1)利用已知的新定义计算即可得到结果;
(2)根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.
【详解】
解:(1)∵
∴=2-(-2)+2015=2019;
(2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,
∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米,
∴买地毯至少需要20×40=800元.
故答案为:(1)2019;(2)800.
【点睛】
(1)本题考查有理数的混合运算,熟练掌握运算法则是解本题的关键.
(2)本题考查平移的性质,,解题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.
4、
【分析】
根据题意,可以写出这列数的前几个数,从而可以发现数字的变化特点,进而得到a2019的值.
【详解】
解:,是的差倒数,
即,是的差倒数,
即,是的差倒数,
即,
…
依此类推,∵,
∴.
故答案为:.
【点睛】
本题考查数字的变化类、新定义,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值.
5、
【详解】
试题解析:由勾股定理得,
直角三角形的斜边长=cm;
直角三角形的面积=cm2.
故答案为.
三、解答题
1、(1);(2).
【分析】
(1)首先设出抛物线的顶点式表达式为,然后将(1,0)代入求解即可;
(2)根据二次函数的增减性和对称性可得当,取最大值,当,取最小值,然后代入求解即可.
【详解】
解:(1)由抛物线顶点式表达式得:
将(1,0)代入得:,解得:
∴二次函数解析式为:;
(2)∵,
∴抛物线对称轴为:,开口向上,
∵,,,
∴当,取最大值=,
当,取最小值-2,
∴当时,
函数值y得取值范围是:.
【点睛】
此题考查了待定系数法求二次函数表达式,二次函数的图像和性质,解题的关键是熟练掌握待定系数法求二次函数表达式,二次函数的图像和性质.
2、
(1),
(2)见解析
(3)1002
【分析】
(1)根据定义分析即可求解;
(2)根据定义写出,进而写出它的“如虎添翼数”与M的各位数字之和,根据整式的加减运算得出,即可得证;
(3)根据定义写出,根据确定的值,进而求解.
(1)
解:当,,的如虎添翼数n是,将的任意一个数位上的数字去掉后可以得到四个新的三位数:
则
(2)
设,则,
的如虎添翼数n是,其中,则,
M的个位数字为
任意一个十位数字为0的三位数M,它的“如虎添翼数”与M的个位数字之和能被11整除.
(3)
百位数字和十位数字和为:
能被17整除
是千位,则
是三位数,
取最大时,取最大,
即能被17整除
符合
的最大值为
【点睛】
本题考查了列代数式,整除,整式的加减,一元一次方程的应用,理解题意是解题的关键.
3、
(1)
(2)存在,点或
(3),
【分析】
(1)用待定系数法即可求解;
(2)当∠CP′M为直角时,则P′C∥x轴,即可求解;当∠PCM为直角时,用解直角三角形的方法求出PN=MN+PM=,即可求解;
(3)作点C关于函数对称轴的对称点C′(2,8),作点D关于x轴的对称点D′(0,-4),连接C′D′交x轴于点E,交函数的对称轴于点F,则点E、F为所求点,进而求解.
(1)
由题意得,点A、B、C的坐标分别为(-2,0)、(4,0)、(0,8),
设抛物线的表达式为y=ax2+bx+c,则
,
解得,
故抛物线的表达式为y=-x2+2x+8;
(2)
存在,理由:
当∠CP′M为直角时,
则以P、C、M为顶点的三角形与△MNB相似时,则P′C∥x轴,
则点P′的坐标为(1,8);
当∠PCM为直角时,
在Rt△OBC中,设∠CBO=α,则,则,
在Rt△NMB中,NB=4-1=3,
则,
同理可得,MN=6,
由点B、C的坐标得,,则,
在Rt△PCM中,∠CPM=∠OBC=α,
则,
则PN=MN+PM=,
故点P的坐标为(1,),
故点P的坐标为(1,8)或(1,);
(3)
∵D为CO的中点,则点D(0,4),
作点C关于函数对称轴的对称点C′(2,8),作点D关于x轴的对称点D′(0,-4),
连接C′D′交x轴于点E,交函数的对称轴于点F,则点E、F为所求点,
理由:G走过的路程=DE+EF+FC=D′E+EF+FC′=C′D′为最短,
由点C′、D′的坐标得,直线C′D′的表达式为y=6x-4,
对于y=6x-4,当y=6x-4=0时,解得,当x=1时,y=2,
故点E、F的坐标分别为、(1,2);
G走过的最短路程为C′D′= .
【点睛】
主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
4、
(1)①5;②是,理由见解析
(2)5,理由见解析
(3)秒或秒,理由见解析
【分析】
(1)①由∠AOC的度数,求出∠COM的度数,根据互余可得出∠CON的度数,进而求出时间t;
②根据图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根据∠BOM=∠COM,即可得出ON平分∠AOC;
(2)根据图形和题意得出∠AON+∠BOM=90°,∠CON=∠COM=45°,再根据转动速度从而得出答案;
(3)需要分两种情况,当射线OC在直线AB上方时,在直线下方时两种情况,再根据旋转建立方程即可.
【小题1】
解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,
∵∠AOC=30°,
∴∠BOC=2∠COM=150°,
∴∠COM=75°,
∴∠CON=15°,
∴∠AON=∠AOC-∠CON=30°-15°=15°,
∴∠AON=∠CON,
解得:t=15°÷3°=5;
故答案为:①5;
②是,理由如下:
由上可知,∠CON=∠AON=15°,
∴ON平分∠AOC;
【小题2】
经过5秒时,OC平分∠MON,理由如下:
∵∠AON+∠BOM=90°,∠CON=∠COM,
∵∠MON=90°,
∴∠CON=∠COM=45°,
∵三角板绕点O以每秒3°的速度顺时针旋转,射线OC也绕O点以每秒6°的速度顺时针旋转,
设∠AON为3t,∠AOC为30°+6t,
当OC平分∠MON时,∠CON=∠COM=45°,
∴∠AOC-∠AON=45°,
可得:30°+6t-3t=45°,
解得:t=5;
【小题3】
根据题意,有两种情况,当射线OC在直线AB上方时,如图4①,当射线OC在直线直线AB下方时,如图4②,
则有30°+6t+10°=180°,或30°+6t-10°=180°,
解得t=或,
∴经过秒或秒时,∠BOC=10°.
【点睛】
此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
5、(1)t=;(2)y=−t2+6t(0<t<14);(3)t=;(4)
【分析】
(1)通过证明△CEM∽△BMP,可得,即可求解;
(2)利用锐角三角函数分别求出EH,HP,由三角形面积公式可求解;
(3)由S△EHP=S△EMP,列出等式可求解;
(4)由对称性可得∠AEP=∠BEP,由角平分线的性质可得PF=PH,由面积关系可求解.
【详解】
解:(1)∵四边形ABCD是矩形
∴AB=CD,BC=AD
∵M是BC边的中点,
∴CM=BM=6cm,
∵,DE=9cm,
∴EC=5cm,
∵PM⊥EM,
∴∠PMB+∠CME=90°,
又∵∠BMP+∠BPM=90°,
∴∠BPM=∠EMC,
又∵∠B=∠C=90°,
∴△CEM∽△BMP,
∴,
∴,
∴t=;
(2)∵四边形ABCD是矩形,
∴∠D=90°,
∴AE2=AD2+DE2,
∵AD=12cm,DE=9cm,
∴AE=cm,
∵ABCD,
∴∠DEA=∠EAB,
∴sin∠DEA=sin∠EAB,
∴,
∴,
∴HP=t,
∴AH==t,
∴HE=15−t,
∵S△EHP=×EH×HP,
∴y=(15−t)×t=−t2+6t(0<t<14);
(3)∵EP平分四边形PMEH的面积,
∴S△EHP=S△EMP,
∴(15−t)×t=×12×(5+14−t)−×6×(14−t)−×6×5,
解得:t1=,t2=
∵0<t<14,
∴t=;
(4)如图2,连接BE,过点P作PF⊥BE于F,
∵点B关于PE的对称点,落在线段AE上,
∴∠AEP=∠BEP,
又∵PH⊥AE,PF⊥BE,
∴PF=PH=t,
∵EC=5cm,BC=12cm,
∴BE=cm,
∵S△ABE=S△AEP+S△BEP,
∴×14×12=×(15+13)×t,
∴t=.
【点睛】
本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键.
【历年真题】最新中考数学模拟专项测试 B卷(含答案详解): 这是一份【历年真题】最新中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了在中,,,那么的值等于,下列说法中正确的个数是等内容,欢迎下载使用。
【历年真题】2022年河北省沧州市中考数学模拟专项测评 A卷(含答案详解): 这是一份【历年真题】2022年河北省沧州市中考数学模拟专项测评 A卷(含答案详解),共19页。试卷主要包含了下列运算中,正确的是,下列说法中正确的个数是,在中,,,那么的值等于等内容,欢迎下载使用。
【历年真题】中考数学模拟专项测试 B卷(含答案及详解): 这是一份【历年真题】中考数学模拟专项测试 B卷(含答案及详解),共20页。试卷主要包含了不等式+1<的负整数解有,下列计算,下列变形中,正确的是等内容,欢迎下载使用。