【历年真题】2022年石家庄桥西区中考数学真题模拟测评 (A)卷(含答案及解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②.这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是( )
A.60B.100C.125D.150
2、邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ).
A.19℃B.-19 ℃C.15℃D.-15℃
3、已知空气的单位体积质量为克/厘米3,将用小数表示为( )
A.B.C.D.
4、如图,是的边上的中线,,则的取值范围为( )
A.B.C.D.
5、某件商品先按成本价加价50%后标价,再以九折出售,售价为135元,若设这件商品的成本价是x元,根据题意,可得到的方程是( )
A.B.
C.D.
6、化简的结果是( )
A.1B.C.D.
7、若a<0,则=( ) .
A.aB.-aC.- D.0
8、下列分式中,最简分式是( )
A.B.C.D.
9、下列说法中正确的个数是( )
①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段;⑤若,则点为线段的中点;⑥不相交的两条直线叫做平行线。
A.个B.个C.个D.个
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
10、如果,且,那么的值一定是( ) .
A.正数B.负数C.0D.不确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、己知,为锐角的外心,,那么________.
2、将一个圆分割成三个扇形,它们的圆心角度数比为,那么最大扇形的圆心角的度数为________.
3、如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为 cm的圆形纸片所覆盖.
4、若关于x的分式方程有增根,则增根为__________,m的值为__________.
5、若不等式组的解集是-1<x<1,则(a+b)2019=________.
三、解答题(5小题,每小题10分,共计50分)
1、某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4米,宽AB=3米,抛物线的最高点E到BC的距离为4米.
(1)按如图①所示的直角坐标系,抛物线可以用表示.直接写出抛物线的函数表达式 .
(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户每平方米的成本为50元.已知GM=2米,直接写出:每个B型活动板房的成本是 元.(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)
(3)根据市场信息,这样的B型活动板房公司每月最多能生产个,若以单价元销售B型活动板房,每月能售出个;若单价每降低元,每月能多售出个这样的B型活动板房.不考虑其他因素,公司将销售单价(元)定为多少时,每月销售B型活动板房所获利润(元)最大?最大利润是多少?
2、如图1,点、、共线且,,射线,分别平分和.
如图2,将射线以每秒的速度绕点顺时针旋转一周,同时将以每秒的速度绕点顺时针旋转,当射线与射线重合时,停止运动.设射线的运动时间为.
(1)运动开始前,如图1,________,________
(2)旋转过程中,当为何值时,射线平分?
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)旋转过程中,是否存在某一时刻使得?若存在,请求出的值;若不存在,请说明理由.
3、在平面直角坐标系中,抛物线与轴交于点,(在的左侧).
(1)抛物线的对称轴为直线,.求抛物线的表达式;
(2)将(1)中的抛物线,向左平移两个单位后再向下平移,得到的抛物线经过点,且与正半轴交于点,记平移后的抛物线顶点为,若是等腰直角三角形,求点的坐标;
(3)当时,抛物线上有两点和,若,,,试判断与的大小,并说明理由.
4、如图,在矩形ABCD中,,,E是CD边上的一点,,M是BC边的中点,动点P从点A出发.沿边AB以的速度向终点B运动,过点P作于点H,连接EP.设动点P的运动时间是.
(1)当t为何值时,?
(2)设的面积为,写出与之间的函数关系式.
(3)当EP平分四边形PMEH的面积时,求t的值.
(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由.
5、某工厂甲乙两车间生产汽车零件,四月份甲乙两车间生产零件数之比是4:7,五月份甲车间提高生产效率,比四月份提高了25%,乙车间却比四月份少生产50个,这样五月份共生产1150个零件.求四月份甲乙两车间生产零件个数各多少个.
-参考答案-
一、单选题
1、B
【分析】
分析图形变化过程中的等量关系,求出变化后的长方形Ⅱ部分的长和宽即可.
【详解】
解:如图:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵拼成的长方形的长为(a+b),宽为(a-b),
∴,解得a=25,b=5,
∴长方形Ⅱ的面积=b(a-b)=5×(25-5)=100.
故选B.
【点睛】
本题考查了完全平方公式(a+b)2=a2+2ab+b2的几何背景,解题的关键是找出图形等积变化过程中的等量关系.
2、A
【分析】
用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.
【详解】
解:17-(-2)
=17+2
=19℃.
故选A.
【点睛】
本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.
3、B
【分析】
指数是-3,说明数字1前面有3个0
【详解】
指数是-3,说明数字1前面有3个0,
故选B
【点睛】
在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)
4、C
【分析】
延长至点E,使,连接,证明,可得,然后运用三角形三边关系可得结果.
【详解】
如图,延长至点E,使,连接.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵为的边上的中线,
∴,
在和中,
∴,
∴.
在中,,
即,
∴,
故选:C.
【点睛】
本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键.
5、A
【分析】
设这件商品的成本价为x元,售价=标价×90%,据此列方程.
【详解】
解:标价为,
九折出售的价格为,
可列方程为.
故选:A.
【点睛】
本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
6、D
【分析】
括号里通分化简,然后根据除以一个数等于乘以这个数的倒数计算即可.
【详解】
解:原式,
故选:D.
【点睛】
本题考查了分式的混合运算,熟知运算法则是解题的关键.
7、B
【分析】
根据负数的绝对值等于它的相反数,即可解答.
【详解】
解:∵a<0,
∴|a|=-a.
故选:B .
【点睛】
本题考查绝对值,解题的关键是熟记负数的绝对值等于它的相反数.
8、C
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.
【详解】A、分式的分子与分母中的系数34和85有公因式17,可以约分,故A错误;
B、==y−x,故B错误;
C、分子分母没有公因式,是最简分式,故C正确;
D、==,故D错误,
故选C.
【点睛】本题考查了最简分式,熟练掌握最简分式的概念是解题的关键.分式的化简过程,首先要把分子分母分解因式,然后进行约分.
9、D
【分析】
本题属于基础应用题,只需学生熟练掌握平面图形的基本概念,即可完成.
【详解】
①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④两点之间线段的长度,叫做这两点之间的距离,故本小题错误;
⑤若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误;
⑥在同一平面内,不相交的两条直线叫做平行线,故本小题错误;
所以,正确的结论有①,共1个.
故选D.
【点睛】
熟练掌握平面图形的基本概念
10、A
【分析】
根据有理数的加减法法则判断即可.
【详解】
解:∵a<0,b<0,且|a|<|b|,
∴-b>0,|a|<|-b|,
∴=a+(-b)>0.
故选:A.
【点睛】
本题考查有理数的加减法法则.用到的知识点:减去一个数等于加上这个数的相反数,绝对值不等的异号加减,取绝对值较大的加数符号.
二、填空题
1、
【解析】
【分析】
根据外心的概念及圆周角定理即可求出答案.
【详解】
∵O是△ABC的外心,
∴O为△ABC的外接圆圆心,
∵∠BOC是弧BC所对圆心角,∠BAC是弧BC所对圆周角,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠BAC=∠BOC=40°,
故答案为:40°
【点睛】
本题考查外心的概念及圆周角定理,外心是三角形外接圆的圆心,同弧所对的圆周角等于圆心角的一半,熟练掌握外心的概念及圆周角定理是解题关键·.
2、
【分析】
根据它们的圆心角的度数和为周角,则利用它们所占的百分比计算它们的度数.
【详解】
最大扇形的圆心角的度数=360°×=200°.
故答案为200°.
【点睛】
本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
3、.
【分析】
作圆的直径,连接,根据圆周角定理求出,根据锐角三角函数的定义得出,代入求出即可.
【详解】
解:作圆O的直径CD,连接BD,
∵圆周角∠A、∠D所对弧都是,
∴∠D=∠A=60°.
∵CD是直径,∴∠DBC=90°.
∴sin∠D=.
又∵BC=3cm,∴sin60°=,解得:CD=.
∴的半径是(cm).
∴△ABC能被半径至少为cm的圆形纸片所覆盖.
【点睛】
本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径.
4、 1
【分析】
分式方程的增根是使得最简公分母为0的未知数的取值,根据分式方程的增根定义即可求解.
【详解】
解:∵原方程有增根,
∴最简公分母,解得,即增根为2,
方程两边同乘,得,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
化简,得,
将代入,得.
故答案为:
【点睛】
本题主要考查分式方程增根的定义,解决本题的关键是要熟练掌握分式方程的解法和增根的定义.
5、-1
【解析】
【分析】
解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后代入即可得到最终答案.
【详解】
解不等式x﹣a>2,得:x>a+2,解不等式b﹣2x>0,得:x.
∵不等式的解集是﹣1<x<1,∴a+2=﹣1,1,解得:a=﹣3,b=2,则(a+b)2019=(﹣3+2)2019=﹣1.
故答案为:﹣1.
【点睛】
本题考查了解一元一次不等式组,已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.
三、解答题
1、
(1)
(2)500
(3)公司将销售单价n定为620元时,每月销售B型活动板房所获利润w最大,最大利润是19200元
【分析】
(1)根据题意,待定系数法求解析式即可;
(2)根据(1)的结论写出的坐标,进而求得,根据矩形的面积公式计算,进而求得每个B型活动板房的成本;
(3)根据利润等于单个利润乘以销售量,进而根据二次函数的性质求得最值即可.
(1)
长方形的长,宽,
抛物线的最高点到的距离为,
,,,,
由题意知抛物线的函数表达式为,把点代入,
得,
该抛物线的函数表达式为.
故答案为:
(2)
,
,
当时,,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
每个B型活动板房的成本是(元).
故答案为:500
(3)
根据题意,得
,
每月最多能生产个B型活动板房,
,
解得,
,
时,随的增大而减小,
当时,有最大值,且最大值为
答:公司将销售单价定为元时,每月销售B型活动板房所获利润最大,最大利润是元.
【点睛】
本题考查了二次函数的应用,二次函数的性质,掌握二次函数的性质是解题的关键.
2、
(1) 40 50
(2)10
(3)
【分析】
(1)由题意结合图形可得,利用补角的性质得出,根据角平分线进行计算即可得出;
(2)分两种情况进行讨论:①射线OD与射线OB重合前;②射线OD与射线OB重合后;作出相应图形,结合运动时间及角平分线进行计算即可得;
(3)由(2)过程可得,分两种情况进行讨论:①当时,②当时;结合相应图形,根据角平分线进行计算即可得.
(1)
解:∵,,
∴,
∴,
∵射线OM平分,
∴,
∵射线ON平分,
∴,
故答案为:;;
(2)
解:如图所示:当射线OC与射线OA重合时,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∵以每秒的速度绕点O顺时针旋转,
∴OC以每秒的速度绕点O顺时针旋转,
∴运动时间为:,
①射线OD与射线OB重合前,
根据题中图2可得:
,
∵ON平分,
∴,
∴,
∵射线OB平分,
∴,
即,
解得:;
当时,不运动,OD一直运动,射线OB平分,
当射线OD与射线OB重合时,
,
,
射线OD旋转一周的时间为:,
②射线OD与射线OB重合后,
当时,设当OD转到如图所示位置时,OB平分,
∵,
∴,
∵ON平分,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
不符合题意,舍去;
综上可得:当t为10s时,射线OB平分;
(3)
解:①当时,
∵射线OM平分,
∴,
由(2)可得:,
,
当时,
,
解得:,
∴时,;
②当时,
,
不符合题意,舍去,
综上可得:时,.
【点睛】
题目主要考查角平分线的计算及角度的计算问题,理解题意,作出相应图形是解题关键.
3、
(1)
(2)
(3)
【分析】
(1)根据对称性求得点的坐标,进而设抛物线交点式即可求得解析式;
(2)根据对称性以及等腰直角三角形的性质即可求得点的坐标;
(3)根据,求得对称轴,根据抛物线开口向下,离对称轴越远的点,其函数值越大,据此分析即可.
(1)
,,且抛物线与轴交于点,,在的左侧.
设
解得
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设抛物线的解析式为
又,
即
(2)
抛物线的对称轴为
将抛物线向左平移2个单位,则新抛物线的对称轴为
关于对称
设
是等腰直角三角形
都小于90°
是直角
解得
根据函数图象可知当时不合题意,舍去
(3)
,,,
和在抛物线上,则点离抛物线的对称轴更近,
【点睛】
本题考查了待定系数法求抛物线的解析式,二次函数的平移,二次函数的性质,掌握二次函数的性质是解题的关键.
4、(1)t=;(2)y=−t2+6t(0<t<14);(3)t=;(4)
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)通过证明△CEM∽△BMP,可得,即可求解;
(2)利用锐角三角函数分别求出EH,HP,由三角形面积公式可求解;
(3)由S△EHP=S△EMP,列出等式可求解;
(4)由对称性可得∠AEP=∠BEP,由角平分线的性质可得PF=PH,由面积关系可求解.
【详解】
解:(1)∵四边形ABCD是矩形
∴AB=CD,BC=AD
∵M是BC边的中点,
∴CM=BM=6cm,
∵,DE=9cm,
∴EC=5cm,
∵PM⊥EM,
∴∠PMB+∠CME=90°,
又∵∠BMP+∠BPM=90°,
∴∠BPM=∠EMC,
又∵∠B=∠C=90°,
∴△CEM∽△BMP,
∴,
∴,
∴t=;
(2)∵四边形ABCD是矩形,
∴∠D=90°,
∴AE2=AD2+DE2,
∵AD=12cm,DE=9cm,
∴AE=cm,
∵ABCD,
∴∠DEA=∠EAB,
∴sin∠DEA=sin∠EAB,
∴,
∴,
∴HP=t,
∴AH==t,
∴HE=15−t,
∵S△EHP=×EH×HP,
∴y=(15−t)×t=−t2+6t(0<t<14);
(3)∵EP平分四边形PMEH的面积,
∴S△EHP=S△EMP,
∴(15−t)×t=×12×(5+14−t)−×6×(14−t)−×6×5,
解得:t1=,t2=
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵0<t<14,
∴t=;
(4)如图2,连接BE,过点P作PF⊥BE于F,
∵点B关于PE的对称点,落在线段AE上,
∴∠AEP=∠BEP,
又∵PH⊥AE,PF⊥BE,
∴PF=PH=t,
∵EC=5cm,BC=12cm,
∴BE=cm,
∵S△ABE=S△AEP+S△BEP,
∴×14×12=×(15+13)×t,
∴t=.
【点睛】
本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键.
5、4月份甲乙两车间生产零件数400个,700个
【分析】
设4月份甲乙两车间生产零件数分别为4x个、7x个,则可得出五月份甲车间生产零件4x(1+25%),乙车间生产零件(7x﹣50),根据五月份共生产1150个零件,可得出方程,解出即可.
【详解】
解:设4月份甲乙两车间生产零件数分别为4x个、7x个,
由题意得,4x(1+25%)+7x﹣50=1150
解得:x=100
4x=400,7x=700.
答:4月份甲乙两车间生产零件数400个,700个.
【点睛】
本题考查了一元一次方程的应用.解题的关键在于正确的列方程求解.
【真题汇总卷】2022年石家庄桥西区中考数学模拟测评 卷(Ⅰ)(含答案及详解): 这是一份【真题汇总卷】2022年石家庄桥西区中考数学模拟测评 卷(Ⅰ)(含答案及详解),共27页。试卷主要包含了是-2的 .,如果,且,那么的值一定是 .等内容,欢迎下载使用。
【历年真题】2022年石家庄桥西区中考数学模拟专项测试 B卷(含答案及详解): 这是一份【历年真题】2022年石家庄桥西区中考数学模拟专项测试 B卷(含答案及详解),共28页。试卷主要包含了化简的结果是,在,,, ,中,负数的个数有.,有下列四种说法,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】2022年石家庄桥西区中考数学三年真题模拟 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年石家庄桥西区中考数学三年真题模拟 卷(Ⅱ)(含详解),共27页。试卷主要包含了在中,,,那么的值等于,已知等腰三角形的两边长满足+,若分式有意义,则的取值范围是等内容,欢迎下载使用。