【真题汇总卷】2022年中考数学真题模拟测评 (A)卷(含答案详解)
展开
这是一份【真题汇总卷】2022年中考数学真题模拟测评 (A)卷(含答案详解),共24页。试卷主要包含了二次函数 y=ax2+bx+c,已知和是同类项,那么的值是,下列说法正确的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6B.6或7C.5或6或7D.6或7或8
2、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )
A.B.C.D.1
3、已知关于x,y的方程组和的解相同,则的值为( )
A.1B.﹣1C.0D.2021
4、下列方程中,属于二元一次方程的是( )
A.xy﹣3=1B.4x﹣2y=3C.x+=4D.x2﹣4y=1
5、二次函数 y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若关于 x 的方程ax2+bx+c=1 有两个根,则这两个根的和为﹣4;④若关于 x 的方程 a(x+5)(x﹣1)=﹣1 有两个根 x1和 x2,且 x1<x2,则﹣5<x1<x2<1.其中正确的结论有( )
A.1 个B.2 个C.3 个D.4 个
6、已知和是同类项,那么的值是( )
A.3B.4C.5D.6
7、下列说法正确的是( )
A.不相交的两条直线叫做平行线
B.过一点有且仅有一条直线与已知直线垂直
C.平角是一条直线
D.过同一平面内三点中任意两点,只能画出3条直线
8、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )
A.B.C.D.
9、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.1B.2C.4D.8
10、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( )
A.11.5×108B.1.15×108C.11.5×109D.1.15×109
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.
2、如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=34°,则∠2=_____°.
3、如图,四边形中,,,,在、上分别找一点M、N,当周长最小时,的度数是______________.
4、多项式x3-4x2y3+26的次数是_______.
5、定义新运算“*”;其规则为a*b=,则方程(2*2)×(4*x)=8的解为x=___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知点A、C分别是∠B两边上的定点.
(1)求作:线段CD,使得DC∥AB,且,点D在点C的右侧;(要求:尺规作图,不写作法,但要保留作图痕迹.)
(2)M是BC的中点,求证:点A、M、D三点在同一直线上.
2、已知,,OC平分∠AON.
(1)如图1,射线与射线OB均在∠MON的内部.
①若,∠MOA= °;
②若,直接写出∠MOA的度数(用含的式子表示);
(2)如图2,射线OA在∠MON的内部,射线OB在∠MON的外部.
①若,求∠MOA的度数(用含的式子表示);
②若在∠MOA的内部有一条射线OD,使得,直接写出∠MOD的度数.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、老师布置了一道化简求值题,如下:求的值,其中,.
(1)小海准备完成时发现第一项的系数被同学涂了一下模糊不清了,同桌说他记得系数是.请你按同桌的提示,帮小海化简求值;
(2)科代表发现系数被涂后,很快把正确的系数写了上去。同学们计算后发现,老师给出的“”这个条件是多余的,请你算一算科代表补上的系数是多少?
4、解下列方程:
(1)
(2)
5、如图,抛物线y=x2+bx+c(a≠0)与x轴交于4B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线的对称轴为直线x=﹣1,点D为抛物线的顶点,连接AD,AC.
(1)求抛物线的解析式;
(2)如图1,点P是抛物线上第三象限内的一个动点,过点P作PM∥x轴交AC于点M,求PM的最大值及此时点P的坐标;
(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线AC上一动点,直接写出使得由点C,B,M,Q组成的四边形是平行四边形的点Q的坐标;并把求其中一个点Q的坐标的过程写出来.
-参考答案-
一、单选题
1、C
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、A
【分析】
直接根据概率公式求解即可.
【详解】
解:由题意得,他恰好选到《新中国史》这本书的概率为,
故选:A.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
3、B
【分析】
联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.
【详解】
解:联立得:,
解得:,
则有,
解得:,
∴,
故选:B.
【点睛】
此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.
4、B
【分析】
二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.
【详解】
解:A、xy-3=1,是二元二次方程,故本选项不合题意;
B、4x-2y=3,属于二元一次方程,故本选项符合题意;
C、x+=4,是分式方程,故本选项不合题意;
D、x2-4y=1,是二元二次方程,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
5、C
【分析】
求解的数量关系;将代入①式中求解判断正误;②将代入,合并同类项判断正负即可;③中方程的根关于对称轴对称,求解判断正误;④中求出二次函数与轴的交点坐标,然后观察方程的解的取值即可判断正误.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:由顶点坐标知
解得
∵
∴当时,,故①正确,符合题意;
,故②错误,不符合题意;
方程的根为的图象与直线的交点的横坐标,即关于直线对称,故有,即,故③正确,符合题意;
,与轴的交点坐标为,方程的根为二次函数图象与直线的交点的横坐标,故可知,故④正确,符合题意;
故选C.
【点睛】
本题考查了二次函数的图象与性质,二次函数与二次方程等知识.解题的关键与难点在于从图象中提取信息,并且熟练掌握二次函数与二次方程的关系.
6、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
7、B
【分析】
根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.
【详解】
解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;
过一点有且仅有一条直线与已知直线垂直,故选项B正确;
平角是角的两边在同一直线上的角,故选项C错误;
过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;
故选:B.
【点睛】
此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.
8、D
【分析】
设这个物品的价格是x元,根据人数不变列方程即可.
【详解】
解:设这个物品的价格是x元,由题意得
,
故选D.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.
9、B
【分析】
利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到.然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可.
【详解】
解:设,
∵点F为AB的中点,
∴.
∵,
∴,即,
解得:.
故选B.
【点睛】
本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.
10、D
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:11.5亿=1150000000=1.5×109.
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题
1、##
【分析】
如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.
【详解】
解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.
∵∠ABC=120°,
∴∠ABH=180°﹣∠ABC=60°,
∵AB=12,∠H=90°,
∴BH=AB•cs60°=6,AH=AB•sin60°=6,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵EF⊥DF,DE=5,
∴sin∠ADE== ,
∴EF=4,
∴DF===3,
∵S△CDE=6,
∴ ·CD·EF=6,
∴CD=3,
∴CF=CD+DF=6,
∵tanC==,
∴ =,
∴CH=9,
∴BC=CH﹣BH=9﹣6.
故答案为:
【点睛】
本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.
2、56
【分析】
先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠1=34°,
∴∠3=90°﹣34°=56°.
∵直尺的两边互相平行,
∴∠2=∠3=56°.
故答案为:56.
【点睛】
本题考查平行线的性质、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
3、128°
【分析】
分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE ,则当M、N在线段EF上时△AMN的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果.
【详解】
分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,如图
由对称的性质得:AN=FN,AM=EM
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠F=∠NAD,∠E=∠MAB
∵AM+AN+MN=EM+FN+MN≥EF
∴当M、N在线段EF上时,△AMN的周长最小
∵∠AMN+∠ANM=∠E+∠MAB+∠F+∠NAD=2∠E+2∠F=2(∠E+∠F)=2(180°−∠BAD)=2×(180°−116°)=128°
故答案为:128°
【点睛】
本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A关于BC、DC的对称点是本题的关键.
4、5
【分析】
根据多项式次数的定义解答.
【详解】
解:多项式各项的次数分别为:3、5、0,
故答案为:5.
【点睛】
此题考查了多项式次数的定义:多项式中次数最高项的次数是多项式的次数,熟记定义是解题的关键.
5、
【分析】
先根据已知新运算求出求出2*2=3,4*x=2+x,根据(2*2)×(4*x)=8求出答案即可.
【详解】
解:∵2*2= =3,4*x==2+x,
又∵(2*2)×(4*x)=8
∴(2*2)×(4*x)=3(x+2)=8,
解得:x=,
故答案为:.
【点睛】
本题考查了有理数的混合运算和解一元一次方程,能灵活运用新运算进行计算是解此题的关键.
三、解答题
1、
(1)见解析
(2)见解析
【分析】
(1)根据题意作,则,在射线上截取,则点即为所求;
(2)连接,设与交于点,证明,可得,则重合,即过点,即可证明点A、M、D三点在同一直线上
(1)
如图所示,点即为所求
(2)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
如图,连接,设与交于点,
,
又
又是的中点
重合
过点,
即点A、M、D三点在同一直线上
【点睛】
本题考查了作一个角等于已知角,作线段等于已知线段,三角形全等的性质与判定,平行线的判定,掌握基本作图是解题的关键.
2、(1)①40;②;(2)①;②.
【分析】
(1)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
②先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
(2)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
②先根据角的和差可得,从而可得,再根据即可得.
【详解】
解:(1)①,
,
平分,
,
,
,
故答案为:40;
②,
,
平分,
,
,
;
(2)①,
,
平分,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
;
②如图,由(2)①已得:,,
,
,
,
.
【点睛】
本题考查了与角平分线有关的角度计算,熟练掌握角的运算是解题关键.
3、
(1),.
(2).
【分析】
(1)按小海所填第一项是计算,先去括号,然后合并同类项化简,代入字母的值,按含乘方的有理数混合运算法则计算即可.
(2)按科代表所填正确的系数计算,设课代表填数的数为m,先去括号,合并同类项得出,根据老师给出的“”这个条件是多余的,可得化简后与x无关,让x的系数为0得出,,解方程得出,在代入字母的值计算即可.
(1)
解:,
=,
=,
当,时,原式=.
(2)
设课代表填数的数为m,
,
=,
=,
∵老师给出的“”这个条件是多余的,
∴化简后与x无关,
∴,
解得.
【点睛】
本题考查整式的加减化简求值,整式的加减中的无关型问题,一元一次方程掌握化简求值的方法与步骤,整式的加减中的无关型问题,一元一次方程是解题关键.
4、
(1);
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2).
【分析】
(1)去括号,移项合并,系数化1即可;
(2)首先分母化整数分母,去分母,去括号,移项,合并,系数化1即可.
(1)
解:,
去括号得:,
移项合并得:,
系数化1得:;
(2)
解:,
小数分母化整数分母得:,
去分母得:,
去括号得:,
移项得:,
合并得:,
系数化1得:.
【点睛】
本题考查一元一次方程的解法,掌握解一元一次方程的方法与步骤是解题关键.
5、
(1)
(2)最大值为2,
(3),或,
【分析】
(1)用待定系数法即可得抛物线的解析式为;
(2)由,得直线解析式为,设,,可得,即得时,的值最大,最大值为2,;
(3)由已知得平移后的抛物线解析式为,设,,而,,①以、为对角线,则的中点即是的中点,即,解得,或,;②以、为对角线,得,方程组无解;③以、为对角线,,解得,或,.
(1)
解:点的坐标为在抛物线,抛物线的对称轴为直线,
,解得,
抛物线的解析式为;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
在中,令得或,
,
在中,令得,
,
设直线解析式为,则,
解得,
直线解析式为,
设,,
由得,
,,
,
,
时,的值最大,最大值为2;
此时;
(3)
将原抛物线向右平移,使得点刚好落在原点,
平移后的抛物线解析式为,
设,,而,,
①以、为对角线,则的中点即是的中点,
,解得,
,或,;
②以、为对角线,
,方程组无解;
③以、为对角线,
,解得,
,或,;
综上所述,,或,.
【点睛】
本题考查二次函数综合应用,涉及待定系数法、平行四边形等知识,解题的关键是用含字母的代数式· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
表示相关点的坐标和相关线段的长度
相关试卷
这是一份【真题汇总卷】2022年唐山迁安市中考数学真题模拟测评 (A)卷(含答案详解),共23页。试卷主要包含了下列各题去括号正确的是.,下列运算中,正确的是,如果,那么的取值范围是,化简的结果是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年北京市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共18页。试卷主要包含了下列图形是中心对称图形的是.,已知4个数,如图,在中,,,则的值为,如图,点C等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年北京市顺义区中考数学真题模拟测评 (A)卷(含答案及详解),共21页。