终身会员
搜索
    上传资料 赚现金

    2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(名师精选)

    立即下载
    加入资料篮
    2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(名师精选)第1页
    2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(名师精选)第2页
    2021-2022学年度沪科版九年级数学下册第24章圆定向训练试题(名师精选)第3页
    还剩28页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课时练习

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共31页。


    沪科版九年级数学下册第24章圆定向训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )

    A.64° B.52° C.42° D.36°
    2、下列图形中,是中心对称图形,但不是轴对称图形的是( )
    A. B. C. D.
    3、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )

    A. B. C. D.
    4、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )

    A.1cm B.2cm C.3cm D.4cm
    5、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )

    A.3 B.4 C.5 D.6
    6、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是(    )

    A.AM=BM B.CM=DM C. D.
    7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
    A.3π B.6π C.12π D.18π
    8、下列图形中,既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    9、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )

    A.105° B.120° C.135° D.150°
    10、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
    A.它们的开口方向相同 B.它们的对称轴相同
    C.它们的变化情況相同 D.它们的顶点坐标相同
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.

    2、如图,已知,在中,,.将绕点A逆时针旋转一个角至位置,连接BD,CE交于点F.
    (I)求证:;
    (2)若四边形ABFE为菱形,求的值;
    (3)在(2)的条件下,若,直接写出CF的值.

    3、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.

    4、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)

    5、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.
    (1)求证:AC为⊙O的切线;
    (2)若⊙O半径为2,OD=4.求线段AD的长.

    2、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H.
    (1)当直线l在如图①的位置时
    ①请直接写出与之间的数量关系______.
    ②请直接写出线段BH,EH,CH之间的数量关系______.
    (2)当直线l在如图②的位置时,请写出线段BH,EH,CH之间的数量关系并证明;
    (3)已知,在直线l旋转过程中当时,请直接写出EH的长.

    3、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.

    (1)求证:AD是⊙O的切线;
    (2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.
    4、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).
    (1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;
    (2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.

    5、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.

    -参考答案-
    一、单选题
    1、B
    【分析】
    先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
    【详解】
    解:∵CC′∥AB,
    ∴∠ACC′=∠CAB=64°
    ∵△ABC在平面内绕点A旋转到△AB′C′的位置,
    ∴∠CAC′等于旋转角,AC=AC′,
    ∴∠ACC′=∠AC′C=64°,
    ∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
    ∴旋转角为52°.
    故选:B.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    2、B
    【分析】
    根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
    【详解】
    解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
    B、是中心对称图形但不是轴对称图形,故符合题意;
    C、既不是轴对称图形也不是中心对称图形,故不符合题意;
    D、是轴对称图形但不是中心对称图形,故不符合题意;
    故选B.
    【点睛】
    本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
    3、B
    【分析】
    由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.
    【详解】
    解:根据题意,如图:

    ∵AB是的直径,OD是半径,,
    ∴AE=CE,
    ∴阴影CED的面积等于AED的面积,
    ∴,
    ∵,,
    ∴,
    ∴;
    故选:B
    【点睛】
    本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
    4、B
    【分析】
    连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
    【详解】
    解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:

    ∵AB=8cm,
    ∴BD=AB=4(cm),
    由题意得:OB=OC==5cm,
    在Rt△OBD中,OD=(cm),
    ∴CD=OC-OD=5-3=2(cm),
    即水的最大深度为2cm,
    故选:B.
    【点睛】
    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    5、B
    【分析】
    由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
    【详解】
    ∵PA,PB是⊙O的切线,A,B为切点,
    ∴,,
    ∴在和中,,
    ∴,
    ∴.
    故选:B
    【点睛】
    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
    6、B
    【分析】
    根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.
    【详解】
    解:∵弦AB⊥CD,CD过圆心O,
    ∴AM=BM,,,
    即选项A、C、D选项说法正确,不符合题意,
    当根据已知条件得CM和DM不一定相等,
    故选B.
    【点睛】
    本题考查了垂径定理,解题的关键是掌握垂径定理.
    7、B
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    8、C
    【详解】
    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
    选项B不是轴对称图形,是中心对称图形,故B不符合题意;
    选项C既是轴对称图形,也是中心对称图形,故C符合题意;
    选项D是轴对称图形,不是中心对称图形,故D不符合题意;
    故选C
    【点睛】
    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
    9、B
    【分析】
    由题意易得,然后根据三角形外角的性质可求解.
    【详解】
    解:由旋转的性质可得:,
    ∴;
    故选B.
    【点睛】
    本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
    10、B
    【分析】
    根据旋转的性质及抛物线的性质即可确定答案.
    【详解】
    抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
    故选:B
    【点睛】
    本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
    二、填空题
    1、
    【分析】
    利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.
    【详解】
    解:由旋转得,,=∠BAC=30°,
    ∵∠ABC=90°,∠BAC=30°,BC=1,
    ∴AC=2BC=2,AB=,,
    ∴阴影部分的面积=

    =,
    故答案为:.

    【点睛】
    此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.
    2、(1)见解析;(2)120°;(3)
    【分析】
    (1)根据旋转的性质和全等三角形的判定解答即可;
    (2)根据等腰三角形的性质求得∠ABD=90°-,∠BAE=+30°,根据菱形的邻角互补求解即可;
    (3)连接AF,根据菱形的性质和全等三角形的性质可求得∠FAC=45°,∠FCA=30°,过F作FG⊥AC于G,设FG=x,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可.
    【详解】
    解:(1)由旋转得:AB=AD,AC=AE,∠BAD=∠CAE=,
    ∵AB=AC,
    ∴AB=AC=AD=AE,
    在△ABD和△ACE中,

    ∴△ABD≌△ACE(SAS);
    (2)∵AB=AD,∠BAD=,∠BAC=30°,
    ∴∠ABD=(180°-∠BAD)÷2=(180°-)÷2=90°-,∠BAE=+30°,
    ∵四边形ABFE是菱形,
    ∴∠BAE+∠ABD=180°,即+30°+90°-=180°,
    解得:=120°;
    (3)连接AF,
    ∵四边形ABFE是菱形,∠BAE=+30°=150°,
    ∴∠BAF=∠BAE=75°,又∠BAC=30°,
    ∴∠FAC=75°-30°=45°,
    ∵△ABD≌△ACE,
    ∴∠FCA=∠ABD=90°-=30°,
    过F作FG⊥AC于G,设FG=x,
    在Rt△AGF中,∠FAG=45°,∠AGF=90°,
    ∴∠AFG=∠FAG=45°,
    ∴△AGF是等腰直角三角形,
    ∴AG=FG=x,
    在在Rt△AGF中,∠FCG=30°,∠FGC=90°,
    ∴CF=2FG=2x,,
    ∵AC=AB=2,又AG+CG=AC,
    ∴,
    解得:,
    ∴CF=2x= .

    【点睛】
    本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键.
    3、##
    【分析】
    连接OA、OC,先求出∠ABC的度数,然后得到∠AOC,再由弧长公式即可求出答案.
    【详解】
    解:连接OA、OC,如图,

    ∵四边形ABCD是⊙O的内接四边形,∠D=110°,
    ∴,
    ∴,
    ∴;
    故答案为:.
    【点睛】
    本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.
    4、
    【分析】
    先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.
    【详解】
    过C作CD⊥OA于D

    ∵一次函数的图象与x轴交于点A,与y轴交于点B,
    ∴当时,,B点坐标为(0,1)
    当时,,A点坐标为

    ∵作的外接圆,
    ∴线段AB中点C的坐标为,
    ∴三角形BOC是等边三角形

    ∵C的坐标为


    故答案为:
    【点睛】
    本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.
    5、
    【分析】
    已知扇形的圆心角为,半径为2,代入弧长公式计算.
    【详解】
    解:依题意,n=,r=2,
    ∴扇形的弧长=.
    故答案为:.
    【点睛】
    本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=.
    三、解答题
    1、(1)见解析;(2)4
    【分析】
    (1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;
    (2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案
    【详解】
    解:(1)连接OB,

    ∵AB是⊙O的切线,
    ∴OB⊥AB,
    即∠ABO=90°,
    ∵BC是弦,OA⊥BC,
    ∴CE=BE,
    ∴AC=AB,
    在△AOB和△AOC中,

    ∴△AOB≌△AOC(SSS),
    ∴∠ACO=∠ABO=90°,
    即AC⊥OC,
    ∴AC是⊙O的切线;
    (2)在Rt△BOD中,由勾股定理得,
    BD==2,
    ∵sinD==,⊙O半径为2,OD=4.
    ∴=,
    解得AC=2,
    ∴AD=BD+AB=4.
    【点睛】
    本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.
    2、(1)①;②;(2);证明见解析;(3)或.
    【分析】
    (1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CF⊥DE,得出CF平分∠ECD即可;
    ②,过点C作CG⊥BE于G,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;
    (2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;
    (3)或,根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.
    【详解】
    解:(1)①
    ∵CE=BC,四边形ABCD为正方形,
    ∴BC=CD=CE,
    ∵CF⊥DE,
    ∴CF平分∠ECD,
    ∴∠ECH=∠HCD,
    故答案为:∠ECH=∠HCD;

    ②,过点C作CG⊥BE于G,
    ∵BC=EC,
    ∴∠ECG=∠BCG=,
    ∵∠ECH=∠HCD=,
    ∴∠GCH=∠ECG+∠ECF=+,
    ∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,
    ∴CG=HG,
    在Rt△GHC中,
    ∴,
    ∵GE=,
    ∴GH=GE+EH=,
    ∴,
    ∴,
    ∴,
    故答案是:;

    (2),
    证明:过点C作交BE于点M,

    则,
    ∴⁰,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴,,
    ∴是等腰直角三角形,
    ∴,
    ∵,
    ∴,
    (3)或,
    ∵,分两种情况,
    当∠ABE=90°-15°=75°时,
    ∵BC=CE,
    ∴∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,
    ∴∠DCE=∠BCE-∠BCD=150°=90°=60°,
    ∵CE=CD,
    ∴△CDE为等边三角形,
    ∴DE=CD=AB=2,∠DEC=60°,
    ∴∠FEH=∠DEC=∠CEB=60°-15°=45°,
    ∵CF⊥DE,
    ∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,
    ∴EF=HF=1,
    ∴HE=,

    当∠ABE=90°+15°=105°,
    ∵BC=CE,∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB=150°,
    ∴∠DCE=360°-∠DCB-∠BCE=120°,
    ∵CE=BC=CD,CH⊥DE,
    ∴∠FCE=,
    ∴∠FEC=180°-∠CFE-∠FCE=30°,
    ∴CF=,
    ∴EF=,
    ∵∠HEF=∠CEB+∠CEF=15°+30°=45°,
    ∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,
    ∴FH=FE,
    ∴EH=,
    ∴或.

    【点睛】
    本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键.
    3、(1)见解析;(2)
    【分析】
    (1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;
    (2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=.
    【详解】
    解:(1)如图所示,连接OA,
    ∵∠CBA=45°,
    ∴∠COA=90°,
    ∵AD∥OC,
    ∴∠OAD+∠COA=180°,
    ∴∠OAD=90°,
    又∵点A在圆O上,
    ∴AD是⊙O的切线;

    (2)连接OB,过点O作OE⊥AB,垂足为E,
    ∵∠OCB=75°,OB=OC,
    ∴∠OCB=∠OBC=75°,
    ∴∠COB=180°-∠OCB-∠OBC=30°,
    由(1)证可得∠AOC=90°,
    ∴∠AOB=120°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=30°,
    又∵OE⊥AB,
    ∴AE=BE,
    在Rt△AOE中,AO=2,∠OAE=30°,
    ∴OE=AO=1,
    由勾股定理可得,,
    ∴AB=.

    【点睛】
    本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.
    4、(1)图见解析;A1(3,3);(2)见解析
    【分析】
    (1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)直接利用旋转的性质得出对应点位置进而得出答案.
    【详解】
    解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);

    (2)如图所示:△A2B2C2,即为所求.
    【点睛】
    此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
    5、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共28页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共33页。

    初中数学沪科版九年级下册第24章 圆综合与测试课后作业题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共25页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map