终身会员
搜索
    上传资料 赚现金

    2021-2022学年度沪科版九年级数学下册第24章圆章节测试练习题

    立即下载
    加入资料篮
    2021-2022学年度沪科版九年级数学下册第24章圆章节测试练习题第1页
    2021-2022学年度沪科版九年级数学下册第24章圆章节测试练习题第2页
    2021-2022学年度沪科版九年级数学下册第24章圆章节测试练习题第3页
    还剩30页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学沪科版第24章 圆综合与测试课时练习

    展开

    这是一份数学沪科版第24章 圆综合与测试课时练习,共33页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆章节测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图图案中,不是中心对称图形的是( )
    A. B. C. D.
    2、如图,是的直径,、是上的两点,若,则( )

    A.15° B.20° C.25° D.30°
    3、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
    A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2
    4、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )

    A.1 B. C. D.2
    5、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )

    A.45° B.60° C.90° D.120°
    6、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
    C.直径是最长的弦 D.垂直于弦的直径平分这条弦
    7、下列说法正确的个数有( )
    ①方程的两个实数根的和等于1;
    ②半圆是弧;
    ③正八边形是中心对称图形;
    ④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;
    ⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.
    A.2个 B.3个 C.4个 D.5个
    8、平面直角坐标系中点关于原点对称的点的坐标是( )
    A. B. C. D.
    9、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是( ).

    A.90° B.100° C.120° D.150°
    10、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )
    A.140° B.100° C.80° D.40°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.

    2、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.

    3、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)

    4、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.

    5、边长为2的正三角形的外接圆的半径等于___.
    三、解答题(5小题,每小题10分,共计50分)
    1、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为、、.若这三个角中有一个角是另外一个角的2倍,则称射线OC为的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)

    (阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)
    (初步应用)(2)如图①,,射线OC为的“幸运线”,则的度数为______;(直接写出答案)
    (解决问题)
    (3)如图②,已知,射线OM从OA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t秒.若OM、ON、OB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.
    (实际运用)
    (4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?
    2、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.
    (1)求证:AC为⊙O的切线;
    (2)若⊙O半径为2,OD=4.求线段AD的长.

    3、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H.
    (1)当直线l在如图①的位置时
    ①请直接写出与之间的数量关系______.
    ②请直接写出线段BH,EH,CH之间的数量关系______.
    (2)当直线l在如图②的位置时,请写出线段BH,EH,CH之间的数量关系并证明;
    (3)已知,在直线l旋转过程中当时,请直接写出EH的长.

    4、如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.

    (1)求证:
    ①BC是⊙O的切线;
    ②;
    (2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.
    5、如图,已知在中,,D、E是BC边上的点,将绕点A旋转,得到,连接.
    (1)当时,时,求证:;
    (2)当时,与有怎样的数量关系?请写出,并说明理由.
    (3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明)


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.
    【详解】
    解:A、是中心对称图形,故A选项不合题意;
    B、是中心对称图形,故B选项不合题意;
    C、不是中心对称图形,故C选项符合题意;
    D、是中心对称图形,故D选项不合题意;
    故选:C.
    【点睛】
    本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.
    2、C
    【分析】
    根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.
    【详解】
    解:∵∠BOC=130°,
    ∴∠BDC=∠BOC=65°,
    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠ADC=90°-65°=25°,
    故选:C.
    【点睛】
    本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.
    3、A
    【分析】
    点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.
    【详解】
    解:∵⊙O的半径为4,点P 在⊙O外部,
    ∴OP需要满足的条件是OP>4,
    故选:A.
    【点睛】
    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
    4、B
    【分析】
    利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
    【详解】
    解: 在Rt中,,
    ∴BC=3,,
    连接CD,过点C作CE⊥AB于E,
    ∵,
    ∴,
    解得,
    ∵CB=CD,CE⊥AB,
    ∴,
    ∴,
    故选:B.

    【点睛】
    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
    5、B
    【分析】
    设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
    【详解】
    解:设∠ADC=α,∠ABC=β;
    ∵四边形ABCO是菱形,
    ∴∠ABC=∠AOC;
    ∠ADC=β;
    四边形为圆的内接四边形,
    α+β=180°,
    ∴ ,
    解得:β=120°,α=60°,则∠ADC=60°,
    故选:B.
    【点睛】
    该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
    6、A
    【分析】
    定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
    【详解】
    A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
    B、C选项,根据圆的定义可以得到;
    D选项,是垂径定理;
    故选:A
    【点睛】
    本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
    7、B
    【分析】
    根据所学知识对五个命题进行判断即可.
    【详解】
    1、Δ=12-4×1=-3<0,故方程无实数根,故本命题错误;
    2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;
    3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;
    4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;
    5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误
    综上所述,正确个数为3
    故选B
    【点睛】
    本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.
    8、B
    【分析】
    根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
    【详解】
    解:平面直角坐标系中点关于原点对称的点的坐标是
    故选B
    【点睛】
    本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
    9、D
    【分析】
    将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.
    【详解】
    解:为等边三角形,

    可将绕点逆时针旋转得,
    如图,连接,

    ,,,
    为等边三角形,
    ,,
    在中,,,,

    为直角三角形,且,

    故选:D.
    【点睛】
    本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
    10、C
    【分析】
    ,,,进而求解的值.
    【详解】
    解:由题意知





    故选C.
    【点睛】
    本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.
    二、填空题
    1、22020
    【分析】
    根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.
    【详解】
    解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),
    ∴OA0=1,
    ∴点A1 的横坐标是 1=20,
    ∴OA1=2OA0=2,
    ∵∠A2A1O=90°,∠A2OA1=60°,
    ∴OA2=2OA1=4,
    ∴点A2 的横坐标是- OA2=-2=-21,
    依次进行下去,Rt△OA2A3,Rt△OA3A4…,
    同理可得:
    点A3 的横坐标是﹣2OA2=﹣8=﹣23,
    点A4 的横坐标是﹣8=﹣23,
    点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,
    点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,
    点A7 的横坐标是64=26,

    发现规律,6次一循环,





    2021÷6=336……5
    则点A2021的横坐标与的坐标规律一致是 22020.
    故答案为:22020.
    【点睛】
    本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.
    2、35°
    【分析】
    利用圆周角定理求出所求角度数即可.
    【详解】
    解:与都对,且,

    故答案为:.
    【点睛】
    本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.
    3、
    【分析】
    先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.
    【详解】
    过C作CD⊥OA于D

    ∵一次函数的图象与x轴交于点A,与y轴交于点B,
    ∴当时,,B点坐标为(0,1)
    当时,,A点坐标为

    ∵作的外接圆,
    ∴线段AB中点C的坐标为,
    ∴三角形BOC是等边三角形

    ∵C的坐标为


    故答案为:
    【点睛】
    本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.
    4、
    【分析】
    如图连接并延长,过点作交于点,,由题意可知为等边三角形,,,在中;在中计算求解即可.
    【详解】
    解:如图连接并延长,过点作交于点,

    由题意可知,,为等边三角形


    在中
    在中
    故答案为:.
    【点睛】
    本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.
    5、
    【分析】
    过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.
    【详解】

    如图所示,是正三角形,故O是的中心,,
    ∵正三角形的边长为2,OE⊥AB
    ∴,,
    ∴,
    由勾股定理得:,
    ∴,
    ∴,
    ∴(负值舍去).
    故答案为:.
    【点睛】
    本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.
    三、解答题
    1、(1)是;(2)16°或24°或32°;(3)2或或;(4).
    【分析】
    (1)根据幸运线定义即可求解;
    (2)分3种情况,根据幸运线定义得到方程求解即可;
    (3)根据幸运线定义得到方程求解即可;
    (4)利用时针1分钟走,分针1分钟走,可解答问题.
    【详解】
    解:(1)一个角的平分线是这个角的“幸运线”;
    故答案为:是;
    (2)①设∠AOC=x,则∠BOC=2x,
    由题意得,x+2x=48°,解得x=16°,
    ②设∠AOC=x,则∠BOC=x,
    由题意得,x+x=48°,解得x=24°,
    ③设∠AOC=x,则∠BOC=x,
    由题意得,x+x=48°,解得x=32°,
    故答案为:16°或24°或32°;
    (3)OB是射线OM与ON的幸运线,
    则∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=2;
    ∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;
    ∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;
    故t的值是2或或;
    (4)时针1分钟走,分针1分钟走,
    设小丽帮妈妈取包裹用了x分钟,
    则有0.5x+3×30=6x,解得:x=.
    【点睛】
    本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.
    2、(1)见解析;(2)4
    【分析】
    (1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;
    (2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案
    【详解】
    解:(1)连接OB,

    ∵AB是⊙O的切线,
    ∴OB⊥AB,
    即∠ABO=90°,
    ∵BC是弦,OA⊥BC,
    ∴CE=BE,
    ∴AC=AB,
    在△AOB和△AOC中,

    ∴△AOB≌△AOC(SSS),
    ∴∠ACO=∠ABO=90°,
    即AC⊥OC,
    ∴AC是⊙O的切线;
    (2)在Rt△BOD中,由勾股定理得,
    BD==2,
    ∵sinD==,⊙O半径为2,OD=4.
    ∴=,
    解得AC=2,
    ∴AD=BD+AB=4.
    【点睛】
    本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.
    3、(1)①;②;(2);证明见解析;(3)或.
    【分析】
    (1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CF⊥DE,得出CF平分∠ECD即可;
    ②,过点C作CG⊥BE于G,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;
    (2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;
    (3)或,根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.
    【详解】
    解:(1)①
    ∵CE=BC,四边形ABCD为正方形,
    ∴BC=CD=CE,
    ∵CF⊥DE,
    ∴CF平分∠ECD,
    ∴∠ECH=∠HCD,
    故答案为:∠ECH=∠HCD;

    ②,过点C作CG⊥BE于G,
    ∵BC=EC,
    ∴∠ECG=∠BCG=,
    ∵∠ECH=∠HCD=,
    ∴∠GCH=∠ECG+∠ECF=+,
    ∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,
    ∴CG=HG,
    在Rt△GHC中,
    ∴,
    ∵GE=,
    ∴GH=GE+EH=,
    ∴,
    ∴,
    ∴,
    故答案是:;

    (2),
    证明:过点C作交BE于点M,

    则,
    ∴⁰,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴,,
    ∴是等腰直角三角形,
    ∴,
    ∵,
    ∴,
    (3)或,
    ∵,分两种情况,
    当∠ABE=90°-15°=75°时,
    ∵BC=CE,
    ∴∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,
    ∴∠DCE=∠BCE-∠BCD=150°=90°=60°,
    ∵CE=CD,
    ∴△CDE为等边三角形,
    ∴DE=CD=AB=2,∠DEC=60°,
    ∴∠FEH=∠DEC=∠CEB=60°-15°=45°,
    ∵CF⊥DE,
    ∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,
    ∴EF=HF=1,
    ∴HE=,

    当∠ABE=90°+15°=105°,
    ∵BC=CE,∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB=150°,
    ∴∠DCE=360°-∠DCB-∠BCE=120°,
    ∵CE=BC=CD,CH⊥DE,
    ∴∠FCE=,
    ∴∠FEC=180°-∠CFE-∠FCE=30°,
    ∴CF=,
    ∴EF=,
    ∵∠HEF=∠CEB+∠CEF=15°+30°=45°,
    ∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,
    ∴FH=FE,
    ∴EH=,
    ∴或.

    【点睛】
    本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键.
    4、(1)①见解析;②见解析;(2).
    【分析】
    (1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;
    ②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;
    (2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.
    【详解】
    解:(1)①连接OD,
    是∠BAC的平分线









    是⊙O的切线;

    ②连接DE,

    是⊙O的切线,

    是直径









    (2)连接DE、OD、DF、OF,

    设圆的半径为R,
    点F是劣弧AD的中点,
    OF是DA中垂线
    DF=AF,





    是等边三角形,四边形DOAF是菱形,








    【点睛】
    本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.
    5、(1)见解析;(2)∠DAE=∠BAC,见解析;(3)DE=BD,见解析
    【分析】
    (1)根据旋转的性质可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠D′AE,再利用“边角边”证明△ADE和△AD′E全等,根据全等三角形对应边相等证明即可;
    (2)根据旋转的性质可得AD=AD′,再利用“边边边”证明△ADE和△AD′E全等,然后根据全等三角形对应角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;
    (3)求出∠D′CE=90°,然后根据等腰直角三角形斜边等于直角边的倍可得D′E=CD′,再根据旋转的性质解答即可.
    【详解】
    (1)证明:∵△ABD绕点A旋转得到△ACD′,
    ∴AD=AD′,∠CAD′=∠BAD,
    ∵∠BAC=120°,∠DAE=60°,
    ∴∠D′AE=∠CAD′+∠CAE
    =∠BAD+∠CAE
    =∠BAC−∠DAE
    =120°−60°
    =60°,
    ∴∠DAE=∠D′AE,
    在△ADE和△AD′E中,

    ∴△ADE≌△AD′E(SAS),
    ∴DE=D′E;
    (2)解:∠DAE= ∠BAC.
    理由如下:在△ADE和△AD′E中,

    ∴△ADE≌△AD′E(SSS),
    ∴∠DAE=∠D′AE,
    ∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,
    ∴∠DAE=∠BAC;
    (3)解:∵∠BAC=90°,AB=AC,
    ∴∠B=∠ACB=∠ACD′=45°,
    ∴∠D′CE=45°+45°=90°,
    ∵△D′EC是等腰直角三角形,
    ∴D′E=CD′,
    由(2)DE=D′E,
    ∵△ABD绕点A旋转得到△ACD′,
    ∴BD=C′D,
    ∴DE=BD.
    【点睛】
    本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试课后练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共34页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。

    九年级下册第24章 圆综合与测试达标测试:

    这是一份九年级下册第24章 圆综合与测试达标测试,共30页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map