年终活动
搜索
    上传资料 赚现金

    2021-2022学年度沪科版九年级数学下册第24章圆重点解析试题(含答案及详细解析)

    2021-2022学年度沪科版九年级数学下册第24章圆重点解析试题(含答案及详细解析)第1页
    2021-2022学年度沪科版九年级数学下册第24章圆重点解析试题(含答案及详细解析)第2页
    2021-2022学年度沪科版九年级数学下册第24章圆重点解析试题(含答案及详细解析)第3页
    还剩27页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课后练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共30页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(    A.30° B.60°C.90° D.120°2、如图,点ABC上,,则的度数是(    A.100° B.50° C.40° D.25°3、下列四个图案中,是中心对称图形的是(  )A. B.C. D.4、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为(      A.140° B.100° C.80° D.40°5、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(   A.3 B.2 C.1 D.6、下面的图形中既是轴对称图形又是中心对称图形的是(    A. B. C. D.7、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )A.10 B.6 C.6 D.128、如图,的直径,弦,垂足为,若,则    A.5 B.8 C.9 D.109、如图,AB是⊙O的直径,弦,则阴影部分图形的面积为(    A. B. C. D.10、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.8第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点AB,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.2、如果点与点B关于原点对称,那么点B的坐标是______.3、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.4、如图,PAPB的切线,切点分别为AB.若,则AB的长为______.5、在平面直角坐标系中,点关于原点对称的点的坐标是______.三、解答题(5小题,每小题10分,共计50分)1、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠AO已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与AC不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC(1)求弦AC的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).2、在平面内,给定不在同一直线上的点ABC,如图所示.点O到点ABC的距离均等于rr为常数),到点O的距离等于r的所有点组成图形GABC的平分线交图形G于点D,连接ADCD.求证:AD=CD.3、如图1,在中,,将边绕着点A逆时针旋转,得到线段,连接边于点E,过点C于点F,延长于点G(1)求证:(2)如图2,当时,求证:(3)如图3,当时,请直接写出的值.4、如图,四边形的内接四边形,(1)求的度数.(2)求的度数.5、已知:如图,△ABC为锐角三角形,ABAC 求作:一点P,使得∠APC=∠BAC作法:①以点A为圆心, AB长为半径画圆;②以点B为圆心,BC长为半径画弧,交⊙A于点CD两点;③连接DA并延长交⊙A于点PP即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PCBDABAC∴点C在⊙ABCBD∴∠_________=∠_________∴∠BACCAD ∵点DP在⊙A上,∴∠CPDCAD(______________________) (填推理的依据)∴∠APC=∠BAC -参考答案-一、单选题1、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.2、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,OA=OB∴∠OAB=∠OBA= 40°,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.4、C【分析】,进而求解的值.【详解】解:由题意知故选C.【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.5、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出6、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A.【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.7、D【分析】连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OBOC∵∠BAC=30°,∴∠BOC=60°.OB=OCBC=6,∴△OBC是等边三角形,OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.8、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接的直径,弦的半径为,则中,解得故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.【详解】解:设ABCD交于点EAB是⊙O的直径,弦CDABCD=2,如图,CE=CD=,∠CEO=∠DEB=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠OCE=30°,又∵,即在△OCE和△BDE中,∴△OCE≌△BDEAAS),∴阴影部分的面积S=S扇形COB=故选D.【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.10、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.二、填空题1、##【分析】先求出点AB的坐标,过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.【详解】解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点AB两点,∴令,则;令,则∴点A为(2,0),点B为(0,4),过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,如图,∴△ABF是等腰直角三角形,AF=AB∴△ABO≌△FAEAAS),AO=FEBO=AE∴点F的坐标为();设直线BC,则,解得:∴直线BC的函数表达式为故答案为:【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.2、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.【详解】解:由题意知点B横坐标为;纵坐标为故答案为:【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.3、18.84【分析】先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.【详解】解:设圆弧所在圆的半径为厘米,解得则它所在圆的周长为(厘米),故答案为:【点睛】本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.4、3【分析】由切线长定理和,可得为等边三角形,则【详解】解:连接,如下图:分别为的切线,为等腰三角形,为等边三角形,故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.5、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题1、(1)8(2)(3)【分析】(1)过点OOHAC于点H,由垂径定理可得AHCHAC,由锐角三角函数和勾股定理可求解;(2)分两种情况讨论,由相似三角形的性质可求AGEGCG的长,即可求解;(3)分两种情况讨论,由相似三角形和勾股定理可求解.(1)如图2,过点OOHAC于点H由垂径定理得:AHCHACRtOAH中,∴设OH=3xAH=4xOH2+AH2OA2∴(3x2+(4x2=52解得:x=±1,(x=﹣1舍去),OH=3,AH=4,AC=2AH=8;(2)如图2,过点OOHACH,过EEGACG∵∠DEO=∠AEC∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD∴∠ACD≠∠DOE∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,∴当△DOE与△AEC相似时,∠DOE=∠AODACODOA=5,AC=8,∵∠AGE=∠AHO=90°,GEOH∴△AEG∽△AOH在Rt△CEG中,(3)当点E在线段OA上时,如图3,过点EEGACG,过点OOHACH,延长AO交⊙OM,连接ADDM由(1)可得 OH=3,AH=4,AC=8,OE=1,AE=4,ME=6,EGOH∴△AEG∽△AOHAGEGGCECAM是直径,∴∠ADM=90°=∠EGC又∵∠M=∠C  ∴△EGC∽△ADMAD=2当点E在线段AO的延长线上时,如图4,延长AO交⊙OM,连接ADDM,过点EEGACG同理可求EGAGAE=6,GCECAM是直径,∴∠ADM=90°=∠EGC又∵∠M=∠C∴△EGC∽△ADM  AD综上所述:AD的长是【点睛】本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.2、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论.【详解】证明:根据题意作图如下:BD是圆周角ABC的角平分线,∴∠ABD=∠CBDAD=CD【点睛】本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.3、(1)见解析(2)见解析(3)【分析】(1)由旋转的性质得AB=AD,所以,再根据三角形内角和定理可证明即可得到结论;(2)连接,根据ASA证明是等边三角形,从而得出,再运用AAS证明,由勾股定理可得出,从而 可得结论;(3)证明平分,作于点,根据勾股定理得,代入求值即可.(1)边绕着点逆时针旋转得到线段 ,且∠AEB=∠CEF(2)连接中,ASA).,即中,AAS).∴在中,是等边三角形.(3)平分于点∴在中,∴在中,【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形.4、(1)70°;(2)103°【分析】(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.【详解】解:(1)中,(2)由圆周角定理,得【点睛】题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键.5、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可【详解】解:(1)如图所示,(2)证明:连接PCBDABAC∴点C在⊙ABCBD∴∠BAC=∠BAD∴∠BACCAD ∵点DP在⊙A上,∴∠CPDCAD圆周角定理) (填推理的依据)∴∠APC=∠BAC故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键. 

    相关试卷

    沪科版第24章 圆综合与测试达标测试:

    这是一份沪科版第24章 圆综合与测试达标测试,共30页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课时练习:

    这是一份沪科版九年级下册第24章 圆综合与测试课时练习,共28页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课时训练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共35页。试卷主要包含了点P关于原点O的对称点的坐标是,在圆内接四边形ABCD中,∠A,下列叙述正确的有个.等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map