终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度沪科版九年级数学下册第24章圆专项测试试卷(精选)

    立即下载
    加入资料篮
    2021-2022学年度沪科版九年级数学下册第24章圆专项测试试卷(精选)第1页
    2021-2022学年度沪科版九年级数学下册第24章圆专项测试试卷(精选)第2页
    2021-2022学年度沪科版九年级数学下册第24章圆专项测试试卷(精选)第3页
    还剩34页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第24章 圆综合与测试同步训练题

    展开

    这是一份2021学年第24章 圆综合与测试同步训练题,共37页。试卷主要包含了如图,点A等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是中心对称图形也是轴对称图形的是(    A. B. C. D.2、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是(    A.1 B. C. D.23、下列汽车标志中既是轴对称图形又是中心对称图形的是(    A. B. C. D.4、如图,在中,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为(    A.3 B.4 C.5 D.65、下列图形中,可以看作是中心对称图形的是(    A. B. C. D.6、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为(    A.36 cm B.27 cm C.24 cm D.15 cm7、如图,ABC是正方形网格中的三个格点,则是(    A.优弧 B.劣弧 C.半圆 D.无法判断8、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是(    A. B.1 C.2 D.9、如图,点ABC上,,则的度数是(    A.100° B.50° C.40° D.25°10、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是(      A.2个 B.3个 C.4个 D.5个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.2、将点x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.3、如图AB为⊙O的直径,点PAB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线ACBD,垂足分别为CD,连接AM,则下列结论正确的是______(写所有正确论的号)AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=4、如图,四边形ABCD内接于圆,ECD延长线上一点, 图中与∠ADE相等的角是 _________ .5、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作RtOA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 RtOA2A3RtOA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.三、解答题(5小题,每小题10分,共计50分)1、请阅读下列材料,并完成相应的任务:阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版《阿基米德全集》.第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,的两条弦(即折线是圆的一条折弦),的中点,则从所作垂线的垂足是折弦的中点,即下面是运用“截长法”证明的部分证明过程.证明:如图2,在上截取,连接的中点,任务:(1)请按照上面的证明思路,写出该证明部分;(2)填空:如图3,已知等边内接于上一点,于点,则的周长是_________.2、如图,以四边形的对角线为直径作圆,圆心为,点上,过点的延长线于点,已知平分(1)求证:切线;(2)若,求的半径和的长.3、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接(1)如图1,当三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接交于点.若,请直接写出的值.4、如图①,在RtABC中,∠BAC = 90°,AB = k·AC,△ADE是由△ABC绕点A逆时针旋转某个角度得到的,BCDE交于点F,直线BDEC交于点G(1)求证:BD = k·EC(2)求∠CGD的度数;(3)若k = 1(如图②),求证:AFG三点在同一直线上.5、如图1,在⊙O中,ACBD,且ACBD,垂足为点E(1)求∠ABD的度数;(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;(3)在(2)的条件下,求的长. -参考答案-一、单选题1、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点CCEABE,利用,求出BE,根据垂径定理求出BD即可得到答案.【详解】解: 在Rt中,BC=3,连接CD,过点CCEABE解得CB=CDCEAB故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.3、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.【详解】由旋转的性质得:是等边三角形,故选:A.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.5、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、C【分析】连接,过点于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.【详解】解:连接,过点于点,交于点,如图所示:的直径为中,即水的最大深度为故选:C.【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.7、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.8、A【分析】CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBMCH是等边△ABC的对称轴,HB=ABHB=BG又∵MB旋转到BNBM=BN在△MBG和△NBH中,∴△MBG≌△NBHSAS),MG=NH根据垂线段最短,MGCH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,MG=CG=HN=故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.9、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,OA=OB∴∠OAB=∠OBA= 40°,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、A【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.二、填空题1、6【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:依据直角三角形的性质:可得斜边长为:依据直角三角形面积公式:,即为内切圆半径面积公式:,即为所以,可得:,所以直径为:故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;2、【分析】设点G的坐标为,过点A轴交于点M,过点轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.【详解】设点G的坐标为,过点A轴交于点M,过点轴交于点N如图所示:∵点A绕点G顺时针旋转90°后得到点轴,轴,中,中,由勾股定理得:解得:故答案为:【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.3、①②④【分析】连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,可得,继而可得,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.【详解】解:连接OMPE的切线,AM平分,故①正确;AB的直径,,故②正确;的长为,故③错误;又∵又∵,则中,由①可得故④正确,故答案为:①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.4、∠ABC【分析】根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.【详解】解:∵四边形ABCD内接于圆,ECD延长线上一点,故答案为:【点睛】题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.5、22020【分析】根据,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.【详解】解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),OA0=1,∴点A1 的横坐标是 1=20OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,OA2=2OA1=4,∴点A2 的横坐标是- OA2=-2=-21 依次进行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:A3 的横坐标是﹣2OA2=﹣8=﹣23A4 的横坐标是﹣8=﹣23A5 的横坐标是 OA5×2OA4=2OA3=4OA2=16=24A6 的横坐标是2OA5=2×2OA4=23OA3=64=26A7 的横坐标是64=26发现规律,6次一循环,2021÷6=336……5则点A2021的横坐标与的坐标规律一致是 22020故答案为:22020【点睛】本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n轴上,且坐标为三、解答题1、(1)证明见解析;(2)【分析】(1)首先证明,进而得出,再利用等腰三角形的性质得出,即可得出答案;(2)首先证明,进而得出,以及,进而求出的长即可得出答案.(1)证明:如图2,在上截取,连接的中点,(2)解:如图3,截取,连接由题意可得:,则 故答案为:【点睛】此题主要考查了圆与三角形综合,涉及了圆周角定理、全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.2、(1)证明见解析(2)【分析】(1)连接OA,根据已知条件证明OAAE即可解决问题;(2)取CD中点F,连接OF,根据垂径定理可得OFCD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.(1)证明:如图,连接OAAECD∴∠DAE+∠ADE=90°.DA平分∠BDE∴∠ADE=∠ADO又∵OA=OD∴∠OAD=∠ADO∴∠DAE+∠OAD=90°,OAAEAE是⊙O切线;(2)解:如图,取CD中点F,连接OFOFCD于点F∴四边形AEFO是矩形,CD=6,DF=FC=3.RtOFD中,OF=AE=4,RtAED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,AD的长是【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.3、(1);(2);证明见解析;(3)【分析】(1)过点于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,勾股定理即可求解;(2)延长,使得,连接,过点,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得(3)过点于点,过点,连接,交于点,过点,交于点,过点于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点于点,如图绕点顺时针旋转120°,得到是等边三角形中,(2)如图,延长,使得,连接,过点,交于点的中点四边形是平行四边形绕点顺时针旋转120°,得到是等边三角形是等边三角形,则,,是等边三角形(3) 如图,过点于点,过点,连接,交于点,过点,交于点,过点于点四点共圆由(2)可知绕点顺时针旋转120°,得到的中点,的中位线是等腰直角三角形四边形是矩形中,,中,【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.4、(1)见解析;(2)90°;(3)见解析【分析】(1)由旋转的性质可得对应边相等对应角相等,由相似三角形的判定得出△ABD∽△ACE,由相似三角形的性质即可得出结论 ;(2)由(1)证得△ABD∽△ACE,和等腰三角形的性质得出,进而推出,由四边形的内角和定理得出结论;(3)连接CD,由旋转的性质和等腰三角形的性质得出CGDGFCFD,由垂直平分线的判断得出AFG都在CD的垂直平分线上,进而得出结论.【详解】证明:(1)∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,ABADACAE,∠BAD=∠CAE∴△ABD∽△ACEAB = k·ACBD = k·EC(2)由(1)证得△ABD∽△ACEABADACAE,∠BAC = 90°,∴∴在四边形ADGE中,,∠BAC = 90°,∴∠CGD=360°-180°-90°=90°;(3)连接CD,如图:∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,∠BAC = 90°,AB = k·AC∴当k = 1时,△ABC和△ADE为等腰直角三角形,,∴CGDG,∴FCFD∴点A、点G和点FCD的垂直平分线上, AFG三点在同一直线上.【点睛】本题考查了相似三角形的性质和判定,旋转的性质,等腰直角三角形的性质和判定,垂直平分线的判定等知识点,熟练掌握相似三角形的判定和垂直平分线的判定是解题的关键.5、(1);(2);(3)【分析】(1)如图,过 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;(2)先求解 再结合(1)的结论可得答案;(3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.【详解】解:(1)如图,过 垂足分别为 连接 四边形为矩形,由勾股定理可得: 四边形为正方形, (2)如图,过 垂足分别为 由(1)得:四边形为正方形, OA=2,∠OAB=15°, (3)如图,连接 【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键. 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共32页。

    数学第24章 圆综合与测试课后练习题:

    这是一份数学第24章 圆综合与测试课后练习题,共29页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试达标测试:

    这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共24页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map