终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向训练练习题(含详解)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向训练练习题(含详解)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向训练练习题(含详解)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向训练练习题(含详解)第3页
    还剩23页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第24章 圆综合与测试同步练习题

    展开

    这是一份数学第24章 圆综合与测试同步练习题,共26页。试卷主要包含了点P关于原点O的对称点的坐标是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆定向训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,ABCD是⊙O的弦,且,若,则的度数为(   

    A.30° B.40° C.45° D.60°

    2、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为(     

    A.140° B.100° C.80° D.40°

    3、在半径为6cm的圆中,的圆心角所对弧的弧长是(   

    A.cm B.cm C.cm D.cm

    4、点P(3,﹣2)关于原点O的对称点的坐标是(  )

    A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)

    5、下列图形中,是中心对称图形的是(   

    A. B.

    C. D.

    6、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是(   

    A.1 B. C. D.2

    7、下列图形中,既是中心对称图形也是轴对称图形的是(   

    A. B. C. D.

    8、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是(     

    A.60 B.90 C.120 D.180

    9、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(   

    A.1cm B.2cm C.3cm D.4cm

    10、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )

    A.AM=BM B.CM=DM C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、边长为2的正三角形的外接圆的半径等于___.

    2、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:

    已知:⊙O(纸片),其半径为

    求作:一个正方形,使其面积等于⊙O的面积.

    作法:①如图1,取⊙O的直径,作射线,过点的垂线

    ②如图2,以点为圆心,为半径画弧交直线于点

    ③将纸片⊙O沿着直线向右无滑动地滚动半周,使点分别落在对应的处;

    ④取的中点,以点为圆心,为半径画半圆,交射线于点

    ⑤以为边作正方形

    正方形即为所求.

    根据上述作图步骤,完成下列填空:

    (1)由①可知,直线为⊙O的切线,其依据是________________________________.

    (2)由②③可知,,则_____________,____________(用含的代数式表示).

    (3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得

    3、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.

    4、如图,在中,内的一个动点,满足.若,则长的最小值为_______.

    5、如图,在中,,分别以边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当时,则阴影部分的面积为__________.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).

    (1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;

    (2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2

    2、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OMOP在直线AB上,其中

    (1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP的内部且平分,此时三角板OPQ旋转的角度为______度;

    (2)三角板OPQ在绕点O按逆时针方向旋转时,若OP的内部.试探究之间满足什么等量关系,并说明理由;

    (3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OCOD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OCOD第二次相遇前,当时,直接写出旋转时间t的值.

    3、如图,内接于BC的直径,DAC延长线上一点.

    (1)请用尺规完成基本作图:作出的角平分线交于点P.(保留作图痕迹,不写作法)

    (2)在(1)所作的图形中,过点P,垂足为E.则PE有怎样的位置关系?请说明理由.

    4、如图,AB为⊙O的弦,OCAB于点M,交⊙O于点C.若⊙O的半径为10,OMMC=3:2,求AB的长.

    5、如图,已知AB是⊙O的直径,,连接OC,弦,直线CDBA的延长线于点

    (1)求证:直线CD是⊙O的切线;

    (2)若,求OC的长.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.

    2、C

    【分析】

    ,进而求解的值.

    【详解】

    解:由题意知

    故选C.

    【点睛】

    本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.

    3、C

    【分析】

    直接根据题意及弧长公式可直接进行求解.

    【详解】

    解:由题意得:的圆心角所对弧的弧长是

    故选C.

    【点睛】

    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.

    4、B

    【分析】

    根据“平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.

    【详解】

    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).

    故选:B

    【点睛】

    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.

    5、C

    【分析】

    根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.

    【详解】

    A、不是中心对称图形,不符合题意;

    B、不是中心对称图形,不符合题意;

    C、是中心对称图形,符合题意;

    D、不是中心对称图形,不符合题意.

    故选:C.

    【点睛】

    本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.

    6、B

    【分析】

    利用三角函数及勾股定理求出BC、AB,连接CD,过点CCEABE,利用,求出BE,根据垂径定理求出BD即可得到答案.

    【详解】

    解: 在Rt中,

    BC=3,

    连接CD,过点CCEABE

    解得

    CB=CDCEAB

    故选:B

    【点睛】

    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.

    7、A

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,不是轴对称图形,故此选项不符合题意;

    D、是中心对称图形,不是轴对称图形,故此选项不符合题意.

    故选:A.

    【点睛】

    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.

    8、C

    【分析】

    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.

    【详解】

    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.

    故选C.

    【点睛】

    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.

    9、B

    【分析】

    连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.

    【详解】

    解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:

    AB=8cm,

    BD=AB=4(cm),

    由题意得:OB=OC==5cm,

    RtOBD中,OD=(cm),

    CD=OC-OD=5-3=2(cm),

    即水的最大深度为2cm,

    故选:B.

    【点睛】

    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    10、B

    【分析】

    根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.

    【详解】

    解:∵弦ABCDCD过圆心O

    AM=BM

    即选项A、C、D选项说法正确,不符合题意,

    当根据已知条件得CMDM不一定相等,

    故选B.

    【点睛】

    本题考查了垂径定理,解题的关键是掌握垂径定理.

    二、填空题

    1、

    【分析】

    过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.

    【详解】

    如图所示,是正三角形,故O的中心,

    ∵正三角形的边长为2,OEAB

    由勾股定理得:

    (负值舍去).

    故答案为:

    【点睛】

    本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.

    2、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2);(3)

    【分析】

    (1)根据切线的定义判断即可.

    (2)由=AC+计算即可;根据计算即可.

    (3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.

    【详解】

    解:(1)∵⊙O的直径,作射线,过点的垂线

    ∴经过半径外端且垂直于这条半径的直线是圆的切线;

    故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;

     (2)根据题意,得AC=r==πr

    =AC+=r+πr

    =

    MA=-r=

    故答案为:                               

    (3)如图,连接ME

    根据勾股定理,得

    =

    =

     故答案为:

    【点睛】

    本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.

    3、

    【分析】

    先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.

    【详解】

    解:∵BC是圆O的切线,

    ∴∠OBC=90°,

    ∵四边形ABCO是平行四边形,

    AO=BC

    又∵AO=BO

    BO=BC

    ∴∠BOC=∠BCO=45°,

    OD=OB

    ∴∠ODB=∠OBD

    ∵∠ODB+∠OBD=∠BOC

    ∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,

    故答案为:22.5°.

    【点睛】

    本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.

    4、2

    【分析】

    AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O,则长的最小值即为,由此求解即可.

    【详解】

    解:如图所示,取AC中点O

    ,即

    ∴∠ADC=90°,

    ∴点D在以O为圆心,以AC为直径的圆上,

    作△ADC外接圆,连接BO,交圆O,则长的最小值即为

    ,∠ACB=90°,

    故答案为:2.

    【点睛】

    本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.

    5、

    【分析】

    根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即

    【详解】

    解:中,

    故答案为:

    【点睛】

    本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.

    三、解答题

    1、(1)图见解析;A1(3,3);(2)见解析

    【分析】

    (1)直接利用平移的性质得出对应点位置进而得出答案;

    (2)直接利用旋转的性质得出对应点位置进而得出答案.

    【详解】

    解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);

    (2)如图所示:△A2B2C2,即为所求.

    【点睛】

    此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.

    2、

    (1)135°

    (2)∠MOP-∠NOQ=30°,理由见解析

    (3)ss

    【分析】

    (1)先根据OP平分得到∠PON,然后求出∠BOP即可;

    (2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;

    (3)先求出旋转前OCOD的夹角,然后再求出OCOD第一次和第二次相遇所需要的时间,再设在OCOD第二次相遇前,当时,需要旋转时间为t,再分OEOC的左侧和OEOC的右侧两种情况解答即可.

    (1)

    解:∵OP平分∠MON

    ∴∠PON=MON=45°

    ∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.

    故答案是135°

    (2)

    解:∠MOP-∠NOQ=30°,理由如下:

    ∵∠MON=90°,∠POQ=60°

    ∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,

    ∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.

    (3)

    解:∵射线OC平分,射线OD平分

    ∴∠NOC=45°,∠POD=30°

    ∴选择前OCOD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°

    OCOD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°

    ∴此时OCOE的夹角165-(180-45-2×33)=96°

    OCOD第二次相遇需要时间360°÷(3°+2°)=72秒

    设在OCOD第二次相遇前,当时,需要旋转时间为t

    ①当OEOC的左侧时,有(5°-2°)t=96°-13°,解得:t=s

    ②当OEOC的右侧时,有(5°-2°)t=96°+13°,解得:t=s

    然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象

    CD第二次相遇需要时间72秒

    ∴在OCOD第二次相遇前,当时,、旋转时间t的值为ss

    【点睛】

    本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.

    3、

    (1)作图见解析

    (2)的切线,理由见解析

    【分析】

    (1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点

    (2)如图2所示,连接,由题意可知;在四边形中,,求出,得出,由于是半径,故有的切线.

    (1)

    解:如图1所示

    (2)

    解:的切线.

    如图2所示,连接

    由题意可知

    在四边形

    又∵是半径

    的切线

    【点睛】

    本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点.解题的关键在于将知识综合灵活运用.

    4、

    【分析】

    连接OA,根据⊙O的半径为10,OMMC=3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可.

    【详解】

    解:如图,连接OA

    OMMC=3:2,OC=10,

    OM=6.

    OCAB

    ∴∠OMA=90°,AB=2AM

    RtAOM中,AO=10,OM=6,

    AM=8.

    AB=2AM =16.

    【点睛】

    本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.

    5、(1)见解析;(2)

    【分析】

    (1)连接OD,由ADOCOD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;

    (2)由ADOC可得△EAD∽△EOC,可得,再由△OBC≌△ODCBC=CD

    从而可得,则可求得OC的长.

    【详解】

    (1)连接OD

    又∵

    中,

    又∵

    的切线.

    (2)∵

    又∵

    OC=15

    【点睛】

    本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.

     

    相关试卷

    沪科版九年级下册第26章 概率初步综合与测试同步练习题:

    这是一份沪科版九年级下册第26章 概率初步综合与测试同步练习题,共21页。试卷主要包含了下列事件是随机事件的是,下列说法正确的是,有两个事件,事件等内容,欢迎下载使用。

    2020-2021学年第24章 圆综合与测试课时训练:

    这是一份2020-2021学年第24章 圆综合与测试课时训练,共28页。试卷主要包含了点P关于原点O的对称点的坐标是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试随堂练习题:

    这是一份数学九年级下册第24章 圆综合与测试随堂练习题,共39页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map