终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向测试试卷(含答案解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向测试试卷(含答案解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向测试试卷(含答案解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向测试试卷(含答案解析)第3页
    还剩30页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课时作业

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共33页。


    沪科版九年级数学下册第24章圆定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图案中既是轴对称图形,又是中心对称图形的是( )
    A. B.
    C. D.
    2、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
    A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2
    3、如图,点A、B、C在上,,则的度数是( )

    A.100° B.50° C.40° D.25°
    4、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
    A.3π B.6π C.12π D.18π
    5、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )

    A.50° B.70° C.110° D.120°
    6、若的圆心角所对的弧长是,则此弧所在圆的半径为( )
    A.1 B.2 C.3 D.4
    7、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )

    A. B.1 C.2 D.
    8、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    9、如图,四边形内接于,如果它的一个外角,那么的度数为( )

    A. B. C. D.
    10、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.

    2、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.

    3、如图,、分别与相切于A、B两点,若,则的度数为________.

    4、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.
    5、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.
    (1)求证:AD∥EC;
    (2)若AD=6,求线段AE的长.

    2、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.

    (1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.
    ①求证:BE平分∠AEC.
    ②取BC的中点P,连接PH,求证:PHCG.
    ③若BC=2AB=2,求BG的长.
    (2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.
    3、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形.P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”.已知点,点,点.
    (1)当时,记线段OA为图形M.
    ①画出图形;
    ②若点C为图形N,则“转后距”为______;
    ③若线段AC为图形N,求“转后距”;

    (2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围.
    4、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.

    5、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)=0.已知:如图,点A(,0),B(0,).
    (1)如果⊙O的半径为2,那么d(A,⊙O)= ,d(B,⊙O)= .
    (2)如果⊙O的半径为r,且d(⊙O,线段AB)=0,求r的取值范围;
    (3)如果C(m,0)是x轴上的动点,⊙C的半径为1,使d(⊙C,线段AB)<1,直接写出m的取值范围.


    -参考答案-
    一、单选题
    1、B
    【分析】
    根据中心对称图形与轴对称图形的概念逐项分析
    【详解】
    解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;
    B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;
    C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
    D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
    故选B
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.
    2、A
    【分析】
    点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.
    【详解】
    解:∵⊙O的半径为4,点P 在⊙O外部,
    ∴OP需要满足的条件是OP>4,
    故选:A.
    【点睛】
    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
    3、C
    【分析】
    先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.
    【详解】
    ∵∠ACB=50°,
    ∴∠AOB=100°,
    ∵OA=OB,
    ∴∠OAB=∠OBA= 40°,
    故选:C.
    【点睛】
    本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    4、B
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    5、B
    【分析】
    根据旋转可得,,得.
    【详解】
    解:,,

    将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
    ,,

    故选:B.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
    6、C
    【分析】
    先设半径为r,再根据弧长公式建立方程,解出r即可
    【详解】
    设半径为r,
    则周长为2πr,
    120°所对应的弧长为
    解得r=3
    故选C
    【点睛】
    本题考查弧长计算,牢记弧长公式是本题关键.
    7、A
    【分析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    解:如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
    ∴MG=CG=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    8、C
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    9、D
    【分析】
    由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.
    【详解】


    ∵四边形内接于

    又∵
    ∴.
    故选:D.
    【点睛】
    本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.
    10、B
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,

    ,点O为AB中点.

    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    二、填空题
    1、65
    【分析】
    根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.
    【详解】
    解:∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴,
    ∵∠APO=25°,
    ∴,
    故答案为:65.
    【点睛】
    本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    2、12
    【分析】
    如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.
    【详解】
    解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,

    ∴当MN的值最小时,△PEF的值最小,
    ∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,
    ∴∠MAN=120°,
    ∴MN=AM=PA,
    ∴当PA的值最小时,MN的值最小,
    取AB的中点J,连接CJ.
    ∵AB=8,AC=4,
    ∴AJ=JB=AC=4,
    ∵∠JAC=60°,
    ∴△JAC是等边三角形,
    ∴JC=JA=JB,
    ∴∠ACB=90°,
    ∴BC=,
    ∵∠BOC=60°,OB=OC,
    ∴△OBC是等边三角形,
    ∴OB=OC=BC=4,∠BCO=60°,
    ∴∠ACH=30°,
    ∵AH⊥OH,
    AH=AC=2,CH=AH=2,
    ∴OH=6,
    ∴OA==4,
    ∵当点P在直线OA上时,PA的值最小,最小值为-,
    ∴MN的最小值为•(-)=-12.
    故答案:-12.
    【点睛】
    本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.
    3、
    【分析】
    根据已知条件可得出,,再利用圆周角定理得出即可.
    【详解】
    解:、分别与相切于、两点,
    ,,



    故答案为:.
    【点睛】
    本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.
    4、9cm
    【分析】
    由弧长公式即可求得弧的半径.
    【详解】


    故答案为:9cm
    【点睛】
    本题考查了扇形的弧长公式,善于对弧长公式变形是关键.
    5、##
    【分析】
    如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.
    【详解】
    解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点
    ∵点C的坐标为(2,2),圆C与x轴相切于点A,
    ∴点A的坐标为(2,0),
    ∴OA=OD=2,即O是AD的中点,
    又∵M是AB的中点,
    ∴OM是△ABD的中位线,
    ∴,
    ∴当BD最小时,OM也最小,
    ∴当B运动到时,BD有最小值,
    ∵C(2,2),D(-2,0),
    ∴,
    ∴,
    ∴,
    故答案为:.

    【点睛】
    本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.
    三、解答题
    1、(1)见解析;(2)6
    【分析】
    (1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;
    (2)过点A作AF⊥EC交EC于点F,由∠AOC=,OA=OC,可得∠OAC=,从而得到∠BAD=,再由AD∥EC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.
    【详解】
    证明:(1)连接OC,

    ∵CE是⊙O的切线,
    ∴∠OCE=,
    ∵∠ABC=,
    ∴∠AOC=2∠ABC=,
    ∵∠AOC+∠OCE=,
    ∴AD∥EC;
    (2)解:过点A作AF⊥EC交EC于点F,
    ∵∠AOC=,OA=OC,
    ∴∠OAC=,
    ∵∠BAC=,
    ∴∠BAD=,
    ∵AD∥EC,
    ∴,
    ∵∠OCE=,∠AOC=,∠AFC=90°,
    ∴四边形OAFC是矩形,
    ∵OA=OC,
    ∴四边形OAFC是正方形,
    ∴,
    ∵,
    ∴,
    在Rt△AFE中,,
    ∴AE=2AF=6.
    【点睛】
    本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.
    2、
    (1)①见解析;②见解析;③
    (2)
    【分析】
    (1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;
    ②如图1,过点作的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;
    ③如图2,过点作的垂线,解直角三角形即可得到结论.
    (2)如图3,连接,,过作交的延长线于,交的延长线于,根据旋转的性质得到,,解直角三角形得到,,根据三角形的面积公式即可得到结论.
    (1)
    解:①证明:矩形绕着点按顺时针方向旋转得到矩形,


    又,


    平分;
    ②证明:如图1,过点作的垂线,

    平分,,,


    ,,,


    即点是中点,
    又点是中点,

    ③解:如图2,过点作的垂线,







    ,,

    (2)
    解:如图3,连接,,过作交的延长线于,交的延长线于,



    将矩形绕着点按顺时针方向旋转得到矩形,
    ,,
    点,,第二次在同一直线上,




    ,,
    ,,
    ,,

    【点睛】
    本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.
    3、(1)①OA′,图形见详解;②2;③ “转后距”为;(2)t的取值范围为t<-5或0<t<2或.
    【分析】
    (1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′.
    ②∵点C为图形N,求出OC=2最短距离;
    ③过点O作OF⊥AC于F,先证△OAC为等边三角形,OF⊥AC,根据勾股定理求出OF=即可;
    (2)点,点,可求tan∠OPQ=,得出当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,列不等式,解得,当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点P在B′左边,PB′>1,OB′=OB=4,t<-5即可.
    【详解】
    解:(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′;
    ②∵点C为图形N,OC=2为图形M与图形N的“转后距”,
    ∴“转后距”为2,
    故答案为2;
    ③线段AC为图形N,
    过点O作OF⊥AC于F,
    根据勾股定理OA=,AC=,
    ∴OA=AC=OC=2,
    ∴△OAC为等边三角形,
    ∵OF⊥AC,
    ∴AF=CF=1,
    ∴OF=,
    ∴“转后距”为;

    (2)∵点,点,
    ∴tan∠OPQ=,
    ∴当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,
    ∵CB=4-2=2=AC,∠ACO=60°,
    ∴∠CAB=∠ABC=30°,
    分三种情况,
    当°,当点P在点B右边,PB=t-4,BD>1,
    ∴BPsin60>1,
    ∴,
    解得;

    当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,
    ∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,
    ∵PB=4-t,
    ∴PB=2PE>2×1即4-t>2,
    解得t<2,
    当t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,
    ∴t>0,
    ∴0<t<2;

    当点P在B′左边,PB′>1,OB′=OB=4,
    ∴t<-5;

    综合t的取值范围为t<-5或0<t<2或.
    【点睛】
    本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.
    4、边长为,边心距为
    【分析】
    过点O作OE⊥BC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根据勾股定理求出OE、BE即可.
    【详解】
    解:过点O作OE⊥BC,垂足为E,

    ∵正方形ABCD是半径为R的⊙O内接四边形,R=6,
    ∴∠BOC==90°,∠OBC=45°,OB=OC=6,
    ∴BE=OE.
    在Rt△OBE中,∠BEO=90°,由勾股定理可得
    ∵OE2+BE2=OB2,
    ∴OE2+BE2=36,
    ∴OE= BE=,
    ∴BC=2BE=,
    即半径为6的圆内接正方形ABCD的边长为,边心距为.
    【点睛】
    本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于.
    5、(1)0,;(2);(3)
    【分析】
    (1)根据新定义,即可求解;
    (2)过点O作OD⊥AB于点D,根据三角形的面积,可得,再由d(⊙O,线段AB)=0,可得当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,即可求解;
    (3)过点C作CN⊥AB于点N ,利用锐角三角函数,可得∠OAB=60°,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解.
    【详解】
    解:(1)∵⊙O的半径为2,A(,0),B(0,).
    ∴,
    ∴点A在⊙O上,点B在⊙O外,
    ∴d(A,⊙O)=,
    ∴d(B,⊙O)=;
    (2)过点O作OD⊥AB于点D,

    ∵点A(,0),B(0,).
    ∴ ,
    ∴ ,
    ∵ ,

    ∴,
    ∵d(⊙O,线段AB)=0,
    ∴当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,
    ∴r的取值范围是,
    (3)如图,过点C作CN⊥AB于点N ,

    ∵点A(,0),B(0,).
    ∴ ,
    ∴ ,
    ∴∠OAB=60°,
    ∵C(m,0),
    当点C在点A的右侧时, ,
    ∴ ,
    ∴ ,
    ∵d(⊙C,线段AB)<1,⊙C的半径为1,
    ∴ ,解得: ,
    当点C与点A重合时, ,
    此时d(⊙C,线段AB)=0,
    当点C在点A的左侧时, ,


    ∴ ,解得: ,
    ∴.
    【点睛】
    本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键.

    相关试卷

    数学九年级下册第24章 圆综合与测试随堂练习题:

    这是一份数学九年级下册第24章 圆综合与测试随堂练习题,共39页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试综合训练题:

    这是一份沪科版九年级下册第24章 圆综合与测试综合训练题,共28页。

    2020-2021学年第24章 圆综合与测试当堂检测题:

    这是一份2020-2021学年第24章 圆综合与测试当堂检测题,共34页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map