沪科版九年级下册第24章 圆综合与测试习题
展开
这是一份沪科版九年级下册第24章 圆综合与测试习题,共26页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在中,,,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )
A.B.C.D.
2、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )
A.B.C.D.
3、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为( )
A.5厘米B.4厘米C.厘米D.厘米
4、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )
A.80°B.70°C.60°D.50°
5、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50°B.70°C.110°D.120°
6、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )
A.50°B.60°C.40°D.30°
7、点P(3,﹣2)关于原点O的对称点的坐标是( )
A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,3)
8、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105°B.120°C.135°D.150°
9、下面的图形中既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
10、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )
A.60B.90C.120D.180
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.
2、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.
3、到点的距离等于8厘米的点的轨迹是__.
4、在平面直角坐标系中,点关于原点对称的点的坐标是______.
5、一个正多边形的中心角是,则这个正多边形的边数为________.
三、解答题(5小题,每小题10分,共计50分)
1、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.
(1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;
(2)把图③补成只是中心对称图形,并把中心标上字母P.
2、如图,在中,,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,与AC的另一个交点为E.
(1)求证:BO平分;
(2)若,,求BO的长.
3、如图,AB是⊙O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D .
(1)求证:DBDE;
(2)若AB12,BD5,求AC长.
4、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.
(1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;
(2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;
(3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.
5、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.
-参考答案-
一、单选题
1、B
【分析】
阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.
【详解】
解:由图可知:阴影部分的面积=扇形扇形,
由旋转性质可知:,,
,,
在中,,,,
,,
有勾股定理可知:,
阴影部分的面积=扇形扇形
.
故选:B.
【点睛】
本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.
2、D
【分析】
根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.
【详解】
解:设AB与CD交于点E,
∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,
∴CE=CD=,∠CEO=∠DEB=90°,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∴∠OCE=30°,
∴,
∴,
又∵,即
∴,
在△OCE和△BDE中,
,
∴△OCE≌△BDE(AAS),
∴
∴阴影部分的面积S=S扇形COB=,
故选D.
【点睛】
本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
3、D
【分析】
根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.
【详解】
解:∵杯口外沿两个交点处的读数恰好是2和8,
∴AC=8-2=6厘米,
过点O作OB⊥AC于点B,
则AB=AC=×6=3厘米,
设杯口的半径为r,则OB=r-2,OA=r,
在Rt△AOB中,
OA2=OB2+AB2,即r2=(r-2)2+32,
解得r=厘米.
故选:D.
【点睛】
本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
4、A
【分析】
根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
【详解】
证明:∵绕点C逆时针旋转得到,
∴,,
∴∠ADC=∠DAC,
∵点A,D,E在同一条直线上,
∴,
∴∠DAC=50°,
∴∠BAD=∠BAC-∠DAC=80°
故选A.
【点睛】
本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
5、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
6、A
【分析】
根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
【详解】
解: 将△OAB绕点O逆时针旋转80°得到△OCD,
∠A的度数为110°,∠D的度数为40°,
故选A
【点睛】
本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
7、B
【分析】
根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
【详解】
解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
故选:B.
【点睛】
本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
8、B
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
9、A
【详解】
解:A、既是轴对称图形又是中心对称图形,此项符合题意;
B、是中心对称图形,不是轴对称图形,此项不符题意;
C、是轴对称图形,不是中心对称图形,此项不符题意;
D、是轴对称图形,不是中心对称图形,此项不符题意;
故选:A.
【点睛】
本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
10、C
【分析】
根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.
【详解】
解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.
故选C.
【点睛】
本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.
二、填空题
1、22020
【分析】
根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.
【详解】
解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),
∴OA0=1,
∴点A1 的横坐标是 1=20,
∴OA1=2OA0=2,
∵∠A2A1O=90°,∠A2OA1=60°,
∴OA2=2OA1=4,
∴点A2 的横坐标是- OA2=-2=-21,
依次进行下去,Rt△OA2A3,Rt△OA3A4…,
同理可得:
点A3 的横坐标是﹣2OA2=﹣8=﹣23,
点A4 的横坐标是﹣8=﹣23,
点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,
点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,
点A7 的横坐标是64=26,
…
发现规律,6次一循环,
即
,
,
2021÷6=336……5
则点A2021的横坐标与的坐标规律一致是 22020.
故答案为:22020.
【点睛】
本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.
2、35°
【分析】
利用圆周角定理求出所求角度数即可.
【详解】
解:与都对,且,
,
故答案为:.
【点睛】
本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.
3、以点为圆心,8厘米长为半径的圆
【分析】
由题意直接根据圆的定义进行分析即可解答.
【详解】
到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.
故答案为:以点为圆心,8厘米长为半径的圆.
【点睛】
本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.
4、(3,4)
【分析】
关于原点对称的点,横坐标与纵坐标都互为相反数.
【详解】
:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),
故答案为:(3,4).
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
5、九9
【分析】
根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.
【详解】
解:设这个正多边形的边数为n,
∵这个正多边形的中心角是40°,
∴,
∴,
∴这个正多边形是九边形,
故答案为:九.
【点睛】
本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.
三、解答题
1、
(1)见解析
(2)见解析
【分析】
(1)根据轴对称图形,中心对称图形的性质画出图形即可.
(2)根据中心对称图形的定义画出图形即可.
(1)
解:图形如图①②所示.
(2)
解:图形如图③所示,点P即为所求作.
【点睛】
本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
2、(1)见解析;(2)2
【分析】
(1)连接OD,由与AB相切得,由HL定理证明由全等三角形的性质得,即可得证;
(2)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可.
【详解】
(1)
如图,连接OD,
∵与AB相切,
∴,
在与中,
,
∴,
∴,
∴平分;
(2)设的半径为,则,
在中,,,
∴,
解得:,
∴,
在中,,即,
在中,.
【点睛】
本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键.
3、(1)见解析;(2)
【分析】
(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
【详解】
(1)如图,
∵DC⊥OA,
∴∠1+∠3=90°,
∵BD为切线,
∴OB⊥BD,
∴∠2+∠5=90°,
∵OA=OB,
∴∠1=∠2,
∵∠3=∠4,
∴∠4=∠5,
在△DEB中,∠4=∠5,
∴DE=DB.
(2)如图,作DF⊥AB于F,
连接OE,∵DB=DE,
∴EF=BE=3,
在Rt△DEF中,EF=3,DE=BD=5,
∴DF=
∴sin∠DEF== ,
∵∠AOE,,
∴∠AOE=∠DEF,
∴在Rt△AOE中,sin∠AOE= ,
∵AE=6,
∴AO=.
【点睛】
本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
4、(1)B和C;(2);(3)
【分析】
(1)根据图形可确定与点A组成的“成对关联点”的点;
(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;
(3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.
【详解】
(1)如图所示:
在点B,C,D中,与点A组成的“成对关联点”的点是B和C,
故答案为:B和C;
(2)∵
∴在直线上,
∵点F与点E关于x轴对称,
∴在直线,
如下图所示:
直线和与分别交于点,,与直线分别交于,,
由题可得:,
当点E在线段上时,有的“成对关联点”
∴;
(3)
如图,当点G在上时,轴,在上不存在这样的矩形;
如图,当点G在下方时,也不存在这样的矩形;
如图,当点G在上方时,存在这样的矩形GMNH,
当恰好只能构成一个矩形时,
设,直线与y轴相交于点K,
则,,,,,
∴,即,
∴,
解得:或(舍),
综上:当时,点G,H是的“成对关联点”.
【点睛】
本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.
5、见解析
【分析】
由题意易得AB⊥CD,,则有,由平行线的性质可得,然后可得,进而问题可求证.
【详解】
证明:∵AB为⊙O的直径,点E是弦CD的中点,
∴AB⊥CD,
∴,
∴,
∵CF∥BD,
∴,
∴,
∴.
【点睛】
本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共33页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共27页。
这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共33页。