终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆综合测试试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆综合测试试卷(精选含详解)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆综合测试试卷(精选含详解)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆综合测试试卷(精选含详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试当堂达标检测题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共31页。


    沪科版九年级数学下册第24章圆综合测试

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列图形中,可以看作是中心对称图形的是(   

    A. B.

    C. D.

    2、点P(-3,1)关于原点对称的点的坐标是(   

    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)

    3、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是(   

    A.6 B. C.3 D.

    4、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△ABC′的位置,使CCAB,则旋转角的度数为(   

    A.64° B.52° C.42° D.36°

    5、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是(    

    A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2

    6、如图,AB的直径,弦CDAB于点P,则CD的长为(   

    A. B. C. D.8

    7、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是  

    A.  B. 

    C.  D.

    8、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )

    A.AM=BM B.CM=DM C. D.

    9、在下列图形中,既是中心对称图形又是轴对称图形的是(  

    A.  B. 

    C.  D.

    10、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使AGH三点刚好在金属框上,则该金属框的半径是(   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,正方形ABCD的边长为1,⊙O经过点CCM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边ABAD于点GHBDCGCH分别交于点EF,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:

    HD=2BG;②∠GCH=45°;③HFEG四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).

    2、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.

    3、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.

    4、如图,PAPB分别与⊙O相切于AB两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°

    5、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.

    三、解答题(5小题,每小题10分,共计50分)

    1、已知:如图,△ABC为锐角三角形,ABAC

    求作:一点P,使得∠APC=∠BAC

    作法:①以点A为圆心, AB长为半径画圆;

    ②以点B为圆心,BC长为半径画弧,交⊙A于点CD两点;

    ③连接DA并延长交⊙A于点P

    P即为所求

    (1)使用直尺和圆规,依作法补全图形(保留作图痕迹);

    (2)完成下面的证明

    证明:连接PCBD

    ABAC

    ∴点C在⊙A

    BCBD

    ∴∠_________=∠_________

    ∴∠BACCAD

    ∵点DP在⊙A上,

    ∴∠CPDCAD(______________________) (填推理的依据)

    ∴∠APC=∠BAC

    2、如图,已知等边内接于⊙OD的中点,连接DB,DC,过点CAB的平行线,交BD的延长线于点E.

    (1)求证:CE是⊙O的切线;

    (2)若AB的长为6,求CE的长.

    3、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.

    圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.

    由圆周角定理,可以得到以下推论:推论1  90°的圆周角所对的弦是直径.(如图)

    (推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.

    求证:线段AB是⊙O的直径.

    请你结合图①写出推论1的证明过程.

    (深入探究)如图②,点ABCD均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为         

    (拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点EBC的中点,连结DE. 若AB,则DE的长为          

    4、如图1,在⊙O中,ACBD,且ACBD,垂足为点E

    (1)求∠ABD的度数;

    (2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;

    (3)在(2)的条件下,求的长.

    5、如图,内接于BC的直径,DAC延长线上一点.

    (1)请用尺规完成基本作图:作出的角平分线交于点P.(保留作图痕迹,不写作法)

    (2)在(1)所作的图形中,过点P,垂足为E.则PE有怎样的位置关系?请说明理由.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    根据中心对称图形的定义进行逐一判断即可.

    【详解】

    解:A、不是中心对称图形,故此选项不符合题意;

    B、不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,故此选项符合题意;

    D、不是中心对称图形,故此选项不符合题意;

    故选C.

    【点睛】

    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:

    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

    2、C

    【分析】

    据平面直角坐标系中任意一点Pxy),关于原点的对称点是(xy),然后直接作答即可.

    【详解】

    解:根据中心对称的性质,可知:点P3,1)关于原点O中心对称的点的坐标为(3,1).

    故选:C.

    【点睛】

    本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.

    3、D

    【分析】

    如图所示,设圆的圆心为O,连接OCOB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明RtOCARtOBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为

    【详解】

    解:如图所示,设圆的圆心为O,连接OCOB

    ACAB都是圆O的切线,

    ∴∠OCA=∠OBA=90°,OC=OB

    又∵OA=OA

    RtOCARtOBAHL),

    ∴∠OAC=∠OAB

    ∵∠DAC=60°,

    ∴∠AOB=30°,

    OA=2AB=6,

    ∴圆O的直径为

    故选D.

    【点睛】

    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.

    4、B

    【分析】

    先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠ACC=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.

    【详解】

    解:∵CC′∥AB

    ∴∠ACC′=∠CAB=64°

    ∵△ABC在平面内绕点A旋转到△ABC′的位置,

    ∴∠CAC′等于旋转角,AC=AC′,

    ∴∠ACC′=∠ACC=64°,

    ∴∠CAC′=180°-∠ACC′-∠ACC=180°-2×64°=52°,

    ∴旋转角为52°.

    故选:B

    【点睛】

    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

    5、A

    【分析】

    点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.

    【详解】

    解:∵⊙O的半径为4,点P 在⊙O外部,

    OP需要满足的条件是OP>4,

    故选:A

    【点睛】

    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.

    6、A

    【分析】

    过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.

    【详解】

    解:如图,过点于点,连接

    AB的直径,

    中,

    故选A

    【点睛】

    本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.

    7、C

    【分析】

    利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.

    【详解】

    解:A、不是中心对称图形,故A错误.

    B、不是中心对称图形,故B错误.

    C、是中心对称图形,故C正确.

    D、不是中心对称图形,故D错误.

    故选:C.

    【点睛】

    本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.

    8、B

    【分析】

    根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.

    【详解】

    解:∵弦ABCDCD过圆心O

    AM=BM

    即选项A、C、D选项说法正确,不符合题意,

    当根据已知条件得CMDM不一定相等,

    故选B.

    【点睛】

    本题考查了垂径定理,解题的关键是掌握垂径定理.

    9、B

    【分析】

    根据中心对称图形与轴对称图形的定义解答即可.

    【详解】

    解:A.是轴对称图形,不是中心对称图形,不符合题意;

    B既是中心对称图形又是轴对称图形,符合题意;

    C. 是轴对称图形,不是中心对称图形,不符合题意;

    D. 既不是中心对称图形,也不是轴对称图形,不符合题意.

    故选B.

    【点睛】

    本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.

    10、A

    【分析】

    如图,记过AGH三点的圆为的垂直平分线的交点,的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.

    【详解】

    解:如图,记过AGH三点的圆为的垂直平分线的交点,

    的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:

    四边形为正方形,则

    AB=2,CD=3,EF=5,结合正方形的性质可得:

    解得:

    故选A

    【点睛】

    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过AGH三点的圆的圆心是解本题的关键.

    二、填空题

    1、②③④

    【分析】

    根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCDGM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PCAC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.

    【详解】

    GH是⊙O的切线,M为切点,且CM是⊙O的直径,

    ∴∠CMH=90°,

    ∵四边形ABCD是正方形,

    ∴∠CMH=∠CDH=90°,

    CM=CDCH=CH

    ∴△CMH≌△CDH

    HD=HM,∠HCM=∠HCD

    同理可证,∴GM=GB,∠GCB=∠GCM

    GB+DH=GH,无法确定HD=2BG

    故①错误;

    ∵∠HCM+∠HCD+∠GCB+∠GCM=90°,

    ∴2∠HCM+2∠GCM=90°,

    ∴∠HCM+∠GCM=45°,

    即∠GCH=45°,

    故②正确;

    ∵△CMH≌△CDHBD是正方形的对角线,

    ∴∠GHF=∠DHF,∠GCH=∠HDF=45°,

    ∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC

    =∠DHF +∠HDF+∠HFD

    =180°,

    根据对角互补的四边形内接于圆,

    HFEG四点在同一个圆上,

    故③正确;

    ∵正方形ABCD的边长为1,

    =1

    =,∠GAH=90°,AC=

    GH的中点P,连接PA

    GH=2PA

    =

    ∴当PA取最小值时,有最大值,

    连接PCAC

    PA+PCAC

    PAAC- PC

    ∴当PC最大时,PA最小,

    ∵直径是圆中最大的弦,

    PC=1时,PA最小,

    ∴当APC三点共线时,且PC最大时,PA最小,

    PA=-1,

    最大值为:1-(-1)=2-

    ∴四边形CGAH面积的最大值为2

    ∴④正确;

    故答案为: ②③④.

    【点睛】

    本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.

    2、60

    【分析】

    正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.

    【详解】

    360°÷6=60°

    故答案为:60

    【点睛】

    本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.

    3、65

    【分析】

    根据切线的性质得到OAAP,根据直角三角形的两锐角互余计算,得到答案.

    【详解】

    解:∵PA是⊙O的切线,

    OAAP

    ∵∠APO=25°,

    故答案为:65.

    【点睛】

    本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.

    4、

    【分析】

    连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB

    【详解】

    解:连接,如图,

    PAPB分别与⊙O相切

    故答案为:

    【点睛】

    本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.

    5、2

    【分析】

    根据扇形的面积公式S,代入计算即可.

    【详解】

    解:∵“完美扇形”的周长等于6,

    ∴半径r=2,弧长l为2,

    这个扇形的面积为:=2.

    答案为:2.

    【点睛】

    本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.

    三、解答题

    1、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半

    【分析】

    (1)根据按步骤作图即可;

    (2)根据圆周角定理进行证明即可

    【详解】

    解:(1)如图所示,

    (2)证明:连接PCBD

    ABAC

    ∴点C在⊙A

    BCBD

    ∴∠BAC=∠BAD

    ∴∠BACCAD

    ∵点DP在⊙A上,

    ∴∠CPDCAD圆周角定理) (填推理的依据)

    ∴∠APC=∠BAC

    故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半

    【点睛】

    本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.

    2、(1)见解析;(2)3

    【分析】

    (1)由题意连接OCOB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;

    (2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.

    【详解】

    解:(1)证明:如图连接OC、OB

    是等边三角形

     

     

    又 ∵

    与⊙O相切;

     (2)∵四边形ABCD是⊙O的内接四边形,

    D的中点,

       

    【点睛】

    本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.

    3、【推论证明】见解析;【深入探究】;【拓展应用】

    【分析】

    推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;

    深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;

    拓展应用:连接AE,作CFDEDE于点F,首先根据等边三角形三线合一的性质求出,然后证明出AECD四点共圆,然后根据同弧或等弧所对的圆周角相等求出,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.

    【详解】

    解:推论证明:∵

    ABO三点共线,

    又∵点O是圆心,

    AB是⊙O的直径;

    深入探究:如图所示,连接AB

    ∵∠ACB=90°

    AB是⊙O的直径

    ∵∠ACD=60°

    ∴在中,

    拓展应用:如图所示,连接AE,作CFDEDE于点F

    ∵△ABC是等边三角形,点EBC的中点

    又∵以AC为底边在三角形ABC外作等腰直角三角形ACD

    ∴点AECD四点都在以AC为直径的圆上,

    CFDE

    是等腰直角三角形

    ,解得:

    ∴在中,

    【点睛】

    此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.

    4、(1);(2);(3)

    【分析】

    (1)如图,过 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;

    (2)先求解 再结合(1)的结论可得答案;

    (3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.

    【详解】

    解:(1)如图,过 垂足分别为 连接

    四边形为矩形,

    由勾股定理可得:

    四边形为正方形,

    (2)如图,过 垂足分别为

    由(1)得:四边形为正方形,

    OA=2,∠OAB=15°,

    (3)如图,连接

    【点睛】

    本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.

    5、

    (1)作图见解析

    (2)的切线,理由见解析

    【分析】

    (1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点

    (2)如图2所示,连接,由题意可知;在四边形中,,求出,得出,由于是半径,故有的切线.

    (1)

    解:如图1所示

    (2)

    解:的切线.

    如图2所示,连接

    由题意可知

    在四边形

    又∵是半径

    的切线

    【点睛】

    本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点.解题的关键在于将知识综合灵活运用.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共32页。试卷主要包含了将一把直尺等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共34页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。

    数学第24章 圆综合与测试达标测试:

    这是一份数学第24章 圆综合与测试达标测试,共29页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map