终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专题测评练习题(精选含解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专题测评练习题(精选含解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专题测评练习题(精选含解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专题测评练习题(精选含解析)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试同步练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆专题测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    2、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4
    3、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
    A.2个 B.3个 C.4个 D.5个
    4、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )

    A. B.
    C. D.
    5、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )

    A. B. C. D.
    6、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
    A. B.
    C. D.
    7、下列图形中,是中心对称图形的是( )
    A. B.
    C. D.
    8、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )

    A. B. C. D.8
    9、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )

    A. B. C.3 D.
    10、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.

    2、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.

    3、一个正多边形的中心角是,则这个正多边形的边数为________.
    4、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.

    5、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,四边形是的内接四边形,,,.
    (1)求的度数.
    (2)求的度数.

    2、如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD的外角∠DAF的平分线.

    (1)求证:AM是⊙O的切线;
    (2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC = 30°,求CD的长.
    3、如图1,在中,,,点,分别在边,上,,连接,,.点在线段上,连接交于点.

    (1)①比较与的大小,并证明;
    ②若,求证:;
    (2)将图1中的绕点逆时针旋转,如图2.若是的中点,判断是否仍然成立.如果成立,请证明;如果不成立,请说明理由.
    4、如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE、BE
    (1)求证:△ACD≌△BCE;
    (2)若BE=5,DE=13,求AB的长

    5、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:

    (1)当时,求的值;
    (2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
    (3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.

    -参考答案-
    一、单选题
    1、B
    【分析】
    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.
    【详解】
    A.不是中心对称图形,故本选项不符合题意;
    B.是中心对称图形,故本选项符合题意;
    C.不是中心对称图形,故本选项不符合题意;
    D.不是中心对称图形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2、D
    【分析】
    首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.
    【详解】
    解:∵在Rt△ABC中,AB=6,BC=8,
    ∴,
    由旋转性质可知,AB= AB'=6,BC= B'C'=8,
    ∴B'C=10-6=4,
    在Rt△B'C'C中,,
    故选:D.
    【点睛】
    本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.
    3、A
    【分析】
    根据轴对称图形与中心对称图形的概念进行判断.
    【详解】
    解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
    等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
    共2个既是轴对称图形又是中心对称图形.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    4、A
    【分析】
    设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
    【详解】
    解:设正六边形的边长为1,当在上时,
    过作于 而




    当在上时,延长交于点 过作于

    同理:
    则为等边三角形,



    当在上时,连接

    由正六边形的性质可得:

    由正六边形的对称性可得: 而


    由正六边形的对称性可得:在上的图象与在上的图象是对称的,
    在上的图象与在上的图象是对称的,
    所以符合题意的是A,
    故选A
    【点睛】
    本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
    5、D
    【分析】
    根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.
    【详解】
    解:设AB与CD交于点E,
    ∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,

    ∴CE=CD=,∠CEO=∠DEB=90°,
    ∵∠CDB=30°,
    ∴∠COB=2∠CDB=60°,
    ∴∠OCE=30°,
    ∴,
    ∴,
    又∵,即
    ∴,
    在△OCE和△BDE中,

    ∴△OCE≌△BDE(AAS),

    ∴阴影部分的面积S=S扇形COB=,
    故选D.
    【点睛】
    本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
    6、D
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、C
    【分析】
    根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.
    【详解】
    A、不是中心对称图形,不符合题意;
    B、不是中心对称图形,不符合题意;
    C、是中心对称图形,符合题意;
    D、不是中心对称图形,不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.
    8、A
    【分析】
    过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.
    【详解】
    解:如图,过点作于点,连接,

    AB是的直径,,,



    在中,


    故选A
    【点睛】
    本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.
    9、D
    【分析】
    连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得
    【详解】
    如图,连接,





    是直角三角形,且




    是等边三角形

    是直径,


    故选D
    【点睛】
    本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.
    10、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:C.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    二、填空题
    1、35°
    【分析】
    利用圆周角定理求出所求角度数即可.
    【详解】
    解:与都对,且,

    故答案为:.
    【点睛】
    本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.
    2、2
    【分析】
    取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.
    【详解】
    解:如图所示,取AC中点O,
    ∵,即,
    ∴∠ADC=90°,
    ∴点D在以O为圆心,以AC为直径的圆上,
    作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,
    ∵,,∠ACB=90°,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:2.

    【点睛】
    本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.
    3、九9
    【分析】
    根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.
    【详解】
    解:设这个正多边形的边数为n,
    ∵这个正多边形的中心角是40°,
    ∴,
    ∴,
    ∴这个正多边形是九边形,
    故答案为:九.
    【点睛】
    本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.
    4、35°
    【分析】
    根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
    ∴∠AOD=∠BOC=30°,AO=DO,
    ∵∠AOC=100°,
    ∴∠BOD=100°−30°×2=40°,
    ∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
    由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
    故答案为:35°.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    5、3
    【分析】
    过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.
    【详解】
    解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,
    ∵=, AB=10,
    ∴∠ACB=∠B=∠D,AB=AC=10,
    ∵AE⊥BC,BC=12,
    ∴BE=CE=6,
    ∴,
    ∵∠B=∠D,∠AEB=∠CFD=90°,
    ∴△ABE∽△CDF,
    ∴,
    ∵AB=10,CD=5,BE=6,AE=8,
    ∴,
    解得:DF=3,CF=4,
    在Rt△AFC中,∠AFC=90°,AC=10,CF=4,
    则,
    ∴AD=DF+AF=3+2,
    故答案为:3+2.

    【点睛】
    本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.
    三、解答题
    1、(1)70°;(2)103°
    【分析】
    (1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;
    (2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.
    【详解】
    解:(1),
    ,,
    在中,

    (2)由圆周角定理,得.

    【点睛】
    题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键.
    2、
    (1)见解析
    (2)CD=2
    【分析】
    (1)由题意易得BC=BD,∠DAM=∠DAF,则有∠CAB=∠DAB,进而可得∠BAM=90°,然后问题可求证;
    (2)由题意易得CD//AM,∠ANC=∠OCE=30°,然后可得OE=1,CE=,进而问题可求解.
    (1)
    证明:∵AB是⊙O的直径,弦CD⊥AB于点E
    ∴BC=BD
    ∴∠CAB=∠DAB
    ∵AM是∠DAF的平分线
    ∴∠DAM=∠DAF
    ∵∠CAD+∠DAF=180°
    ∴∠DAB+∠DAM=90°
    即∠BAM=90°,AB⊥AM
    ∴AM是⊙O的切线
    (2)
    解:∵AB⊥CD,AB⊥AM
    ∴CD//AM
    ∴∠ANC=∠OCE=30°
    在Rt△OCE中,OC=2
    ∴OE=1,CE=
    ∵AB是⊙O的直径,弦CD⊥AB于点E
    ∴CD=2CE=2.
    【点睛】
    本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.
    3、(1)①∠CAE=∠CBD,理由见解析;②证明见解析;(2)AE=2CF仍然成立,理由见解析
    【分析】
    (1)①只需要证明△CAE≌△CBD即可得到∠CAE=∠CBD;
    ②先证明∠CAH=∠BCF,然后推出∠BDC=∠FCD,∠CAE=∠CBD=∠BCF,得到CF=DF,CF=BF,则BD=2CF,再由△CAE≌△CBD,即可得到AE=2BD=2CF;
    (2)如图所示延长DC到G使得,DC=CG,连接BG,只需要证明△ACE≌△BCG得到AE=BG,再由CF是△BDG的中位线,得到BG=2CF,即可证明AE=2CF.
    【详解】
    解:(1)①∠CAE=∠CBD,理由如下:
    在△CAE和△ CBD中,

    ∴△CAE≌△CBD(SAS),
    ∴∠CAE=∠CBD;
    ②∵CF⊥AE,
    ∴∠AHC=∠ACB=90°,
    ∴∠CAH+∠ACH=∠ACH+∠BCF=90°,
    ∴∠CAH=∠BCF,
    ∵∠DCF+∠BCF=90°,∠CDB+∠CBD=90°,∠CAE=∠CBD,
    ∴∠BDC=∠FCD,∠CAE=∠CBD=∠BCF,
    ∴CF=DF,CF=BF,
    ∴BD=2CF,
    又∵△CAE≌△CBD,
    ∴AE=2BD=2CF;
    (2)AE=2CF仍然成立,理由如下:
    如图所示延长DC到G使得,DC=CG,连接BG,
    由旋转的性质可得,∠DCE=∠ACB=90°,
    ∴∠ACD+∠BCD=∠BCE+∠BCD,∠ECG=90°,
    ∴∠ACD=∠BCE,
    ∴∠ACD+∠DCE=∠BCE+∠ECG,即∠ACE=∠BCG,
    又∵CE=CD=CG,AC=BC,
    ∴△ACE≌△BCG(SAS),
    ∴AE=BG,
    ∵F是BD的中点,CD=CG,
    ∴CF是△BDG的中位线,
    ∴BG=2CF,
    ∴AE=2CF.

    【点睛】
    本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键.
    4、(1)见解析;(2)17
    【分析】
    (1)由旋转的性质可得CD=CE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE;
    (2)由∠ACB=90°,AC=BC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BE=AD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.
    【详解】
    解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CE,
    ∴CD=CE,∠DCE=90°=∠ACB,
    ∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE,
    在△ACD和△BCE中,

    ∴△ACD≌△BCE(SAS);
    (2)∵∠ACB=90°,AC=BC,
    ∴∠CAB=∠CBA=45°,
    ∵△ACD≌△BCE,
    ∴BE=AD=5,∠CBE=∠CAD=45°,
    ∴∠ABE=∠ABC+∠CBE=90°,
    ∴,
    ∴AB=AD+BD=17.

    【点睛】
    本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.
    5、
    (1);
    (2),0≤x≤1;
    (3)AE的值为或.
    【分析】
    (1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
    (2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
    (3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
    (1)
    解:过点E作EH⊥BD与H,
    ∵正方形的边长为1,,
    ∴EB=1-,
    ∵BD为正方形对角线,
    ∴BD平分∠ABC,
    ∴∠ABD=45°,
    ∵EH⊥BD,
    ∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
    ∴EH=BH,
    ∴EH=BH=BEsin45=,AB=BDcos45°,
    ∴,
    ∴DH=DB-BH=,

    (2)
    解:如上图,∵AE=x,
    ∴BE=1-x,
    ∵将△ADE绕点D针旋转90°,得到△DCF,
    ∴CF=AE=x,ED=FD=,
    ∴BF=BC+CF=1+x,
    在Rt△EBF中EF=,
    ∵∠EDF=90°,ED=FD,
    ∴△DEF为等腰直角三角形,
    ∴∠DFE=∠DEF=45°,
    ∴∠EBM=∠MFD=45°,
    ∵∠EMB=∠DMF,
    ∴△BEM∽△FDM,
    ∴,即,
    ∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
    ∴△EMD∽△BMF,
    ∴,即,
    ∴,
    ∴,
    ∴即,
    ∴,0≤x≤1;
    (3)
    解:当点G在BC上,,
    ∵四边形ABCD为正方形,
    ∴AD∥BG,
    ∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∵由(2)知△BEM∽△FDM,
    ∴,
    ∵DB=,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴即,
    解,舍去;

    当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
    ∵GB∥AD,
    ∴∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∴,
    ∴,
    ∵∠LBM=∠CBD=45°,ML⊥BC,
    ∴△MLB为等腰直角三角形,
    ∵ML∥CD,
    ∴∠LMB=∠CDB,∠L=∠DCB,
    ∴△MLB∽△DCB,
    ∴,CD=1,
    ∴ML=
    ∵ML∥BE,
    ∴∠L=∠FBE,∠LMF=∠BEF,
    ∴△LMF∽△BEF,
    ∴,
    ∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
    ∴,
    整理得:,
    解得,舍去,

    ∴AE的值为或.
    【点睛】
    本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.

    相关试卷

    2021学年第24章 圆综合与测试当堂达标检测题:

    这是一份2021学年第24章 圆综合与测试当堂达标检测题,共30页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试习题,共31页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共29页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map