终身会员
搜索
    上传资料 赚现金

    2021-2022学年沪科版九年级数学下册第24章圆同步测评练习题(无超纲)

    立即下载
    加入资料篮
    2021-2022学年沪科版九年级数学下册第24章圆同步测评练习题(无超纲)第1页
    2021-2022学年沪科版九年级数学下册第24章圆同步测评练习题(无超纲)第2页
    2021-2022学年沪科版九年级数学下册第24章圆同步测评练习题(无超纲)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课堂检测

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课堂检测,共28页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆同步测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )

    A.AM=BM B.CM=DM C. D.

    2、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(   

    A.3 B.4 C.5 D.6

    3、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(   

    A.1cm B.2cm C.3cm D.4cm

    4、如图,AB的直径,弦CDAB于点P,则CD的长为(   

    A. B. C. D.8

    5、如图,在RtABC中,,点DE分别是ABAC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的(     

    A.①②③ B.①②④ C.①③④ D.②③④

    6、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是(  

    A.  B. 

    C.  D.

    7、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(   

    A.105° B.120° C.135° D.150°

    8、如图,的两边分别相切,其中OA边与相切于点P.若,则OC的长为(   

    A.8 B. C. D.

    9、下列语句判断正确的是(  )

    A.等边三角形是轴对称图形,但不是中心对称图形

    B.等边三角形既是轴对称图形,又是中心对称图形

    C.等边三角形是中心对称图形,但不是轴对称图形

    D.等边三角形既不是轴对称图形,也不是中心对称图形

    10、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是(   

    A.50° B.70° C.110° D.120°

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、在平面直角坐标系中,点关于原点对称的点的坐标是______.

    2、如果点与点B关于原点对称,那么点B的坐标是______.

    3、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作H.连接BH,则在点C移动的过程中,线段BH的最小值是______.

    4、边长为2的正三角形的外接圆的半径等于___.

    5、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________

    三、解答题(5小题,每小题10分,共计50分)

    1、下面是“过圆外一点作圆的切线”的尺规作图过程.

    已知:⊙O和⊙O外一点P

    求作:过点P的⊙O的切线.作法:如图,

    (1)连接OP

    (2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于MN两点;

    (3)作直线MN,交OP于点C

    (4)以点C为圆心,CO的长为半径作圆,交⊙OAB两点;

    (5)作直线PAPB.直线PAPB即为所求作⊙O的切线

    完成如下证明:

    证明:连接OAOB

    OP是⊙C直径,点A在⊙C

    ∴∠OAP=90°(___________)(填推理的依据).

    OAAP

    又∵点A在⊙O上,

    ∴直线PA是⊙O的切线(___________)(填推理的依据).

    同理可证直线PB是⊙O的切线.

    2、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点AADOC,交BC的延长线于D

    (1)求证:AD是⊙O的切线;

    (2)若⊙O的半径为2,∠OCB=75°,求△ABCAB的长.

    3、如图,ABC是⊙O的内接三角形,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E

    (1)求证:ADEC

    (2)若AD=6,求线段AE的长.

    4、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.

    (1)如图2,当t=4 时,∠AOC=     ,∠BOE=     ,∠BOE﹣∠AOC=    

    (2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;

    (3)在旋转过程中,是否存在某个时刻,使得射线 OAOCOD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.

    5、如图,四边形的内接四边形,

    (1)求的度数.

    (2)求的度数.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.

    【详解】

    解:∵弦ABCDCD过圆心O

    AM=BM

    即选项A、C、D选项说法正确,不符合题意,

    当根据已知条件得CMDM不一定相等,

    故选B.

    【点睛】

    本题考查了垂径定理,解题的关键是掌握垂径定理.

    2、B

    【分析】

    由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出

    【详解】

    PAPB是⊙O的切线,AB为切点,

    ∴在中,

    故选:B

    【点睛】

    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.

    3、B

    【分析】

    连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.

    【详解】

    解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:

    AB=8cm,

    BD=AB=4(cm),

    由题意得:OB=OC==5cm,

    RtOBD中,OD=(cm),

    CD=OC-OD=5-3=2(cm),

    即水的最大深度为2cm,

    故选:B.

    【点睛】

    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    4、A

    【分析】

    过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.

    【详解】

    解:如图,过点于点,连接

    AB的直径,

    中,

    故选A

    【点睛】

    本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.

    5、B

    【分析】

    根据,点DE分别是ABAC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AOOPAB=AC=6,∠BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当ADBP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为L可判断④点P运动的路径长为正确即可.

    【详解】

    解:∵,点DE分别是ABAC的中点.

    ∴∠DAE=90°,AD=AE=

    ∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,

    ∴∠DAB=∠EAC,

    在△DAB和△EAC中,

    ∴△DAB≌△EAC(SAS),

    故①△AEC≌△ADB正确;

    作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,

    ∵△AEC≌△ADB,

    ∴∠DBA=∠ECA,

    ∴∠PBA+∠P=∠ECP+∠BAC

    ∴∠P=∠BAC=90°,

    CP为⊙A的切线,

    AECP

    ∴∠DPE=∠PEA=∠DAE=90°,

    ∴四边形DAEP为矩形,

    AD=AE

    ∴四边形DAEP为正方形,

    PE=AE=3,

    在Rt△AEC中,CE=

    CP最大=PE+EC=3+

    故②CP存在最大值为正确;

    ∵△AEC≌△ADB,

    BD=CE=

    在Rt△BPC中,BP最小=

    BP最短=BD-PD=-3,

    故③BP存在最小值为不正确;

    BC中点为O,连结AOOP

    AB=AC=6,∠BAC=90°,

    BP=CO=AO=

    AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=

    ∴∠ACE=30°,

    ∴∠AOP=2∠ACE=60°,

    ADBP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=

    ∴∠ABD=30°,

    ∴∠AOP′=2∠ABD=60°,

    ∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为

    ∵∠POP=∠POA+∠AOP′=60°+60°=120°,

    L

    故④点P运动的路径长为正确;

    正确的是①②④.

    故选B.

    【点睛】

    本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.

    6、C

    【分析】

    利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.

    【详解】

    解:A、不是中心对称图形,故A错误.

    B、不是中心对称图形,故B错误.

    C、是中心对称图形,故C正确.

    D、不是中心对称图形,故D错误.

    故选:C.

    【点睛】

    本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.

    7、B

    【分析】

    由题意易得,然后根据三角形外角的性质可求解.

    【详解】

    解:由旋转的性质可得:

    故选B.

    【点睛】

    本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.

    8、C

    【分析】

    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.

    【详解】

    解:如图所示,连接CP

    OAOB都是圆C的切线,∠AOB=90°,P为切点,

    ∴∠CPO=90°,∠COP=45°,

    ∴∠PCO=∠COP=45°,

    CP=OP=4,

    故选C.

    【点睛】

    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.

    9、A

    【分析】

    根据等边三角形的对称性判断即可.

    【详解】

    ∵等边三角形是轴对称图形,但不是中心对称图形,

    BCD都不符合题意;

    故选:A

    【点睛】

    本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.

    10、B

    【分析】

    根据旋转可得,得

    【详解】

    解:

    绕点逆时针旋转得到△,使点的对应点恰好落在边上,

    故选:B.

    【点睛】

    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.

    二、填空题

    1、(3,4)

    【分析】

    关于原点对称的点,横坐标与纵坐标都互为相反数.

    【详解】

    :由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),

    故答案为:(3,4).

    【点睛】

    本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.

    2、

    【分析】

    关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.

    【详解】

    解:由题意知点B横坐标为;纵坐标为

    故答案为:

    【点睛】

    本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.

    3、##

    【分析】

    连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当三点共线时,最小;求出,在中,,所以,即为所求.

    【详解】

    解:连接,取的中点,连接

    点在以为圆心,为半径的圆上,

    三点共线时,最小,

    是直径,

    中,

    故答案为:

    【点睛】

    本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.

    4、

    【分析】

    过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.

    【详解】

    如图所示,是正三角形,故O的中心,

    ∵正三角形的边长为2,OEAB

    由勾股定理得:

    (负值舍去).

    故答案为:

    【点睛】

    本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.

    5、

    【分析】

    由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为

    【详解】

    是一个圆锥在某平面上的正投影

    为等腰三角形

    ADBC

    中有

    由圆锥侧面积公式有

    故答案为:

    【点睛】

    本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为

    三、解答题

    1、直径所对的圆周角是直角    经过半径的外端并且垂直于这条半径的直线是圆的切线   

    【分析】

    连接OAOB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;

    【详解】

    证明:连接OAOB

    OP是⊙C直径,点A在⊙C上,

    ∴∠OAP=90°(直径所对的圆周角是直角),

    OAAP

    又∵点A在⊙O上,

    ∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),

    同理可证直线PB是⊙O的切线,

    故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.

    2、(1)见解析;(2)

    【分析】

    (1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;

    (2)连接OB,过点OOEAB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=

    【详解】

    解:(1)如图所示,连接OA

    ∵∠CBA=45°,

    ∴∠COA=90°,     

    ADOC

    ∴∠OAD+∠COA=180°,

    ∴∠OAD=90°,

    又∵点A在圆O上,      

    AD是⊙O的切线;

        

    (2)连接OB,过点OOEAB,垂足为E

    ∵∠OCB=75°,OB=OC

    ∴∠OCB=∠OBC=75°,

    ∴∠COB=180°-∠OCB-∠OBC=30°,             

    由(1)证可得∠AOC=90°,

    ∴∠AOB=120°,                  

    OA=OB

    ∴∠OAB=∠OBA=30°,

    又∵OEAB

    AE=BE  

    RtAOE中,AO=2,∠OAE=30°,

    OE=AO=1,                         

    由勾股定理可得,

    AB=

    【点睛】

    本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.

    3、(1)见解析;(2)6

    【分析】

    (1)连接OC,根据CE是⊙O的切线,可得∠OCE,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE,即可求证;

    (2)过点AAFECEC于点F,由∠AOCOAOC,可得∠OAC,从而得到∠BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.

    【详解】

    证明:(1)连接OC

    CE是⊙O的切线,

    ∴∠OCE

    ∵∠ABC

    ∴∠AOC=2∠ABC

    ∵∠AOC+∠OCE

    ADEC

    (2)解:过点AAFECEC于点F

    ∵∠AOCOAOC

    ∴∠OAC

    ∵∠BAC

    ∴∠BAD

    ADEC

    ∵∠OCE,∠AOC,∠AFC=90°,

    ∴四边形OAFC是矩形,

    OAOC

    ∴四边形OAFC是正方形,

    RtAFE中,

    AE=2AF=6.

    【点睛】

    本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.

    4、

    (1)30°,70°,40°;

    (2)∠AOC-∠BOE=40°,理由见解析;

    (3)t 的取值为5或20或62

    【分析】

    (1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;

    (2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;

    (3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.

    (1)

    解:∵∠EOC=130°,∠AOB=∠BOE=90°,

    ∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,

    t=4时,旋转角4×5°=20°,

    ∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,

    BOE-∠AOC=70°-30°=40°,

    故答案为:30°,70°,40°;

    (2)

    解:∠AOC-∠BOE=40°,理由为:

    设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,

    AOC=x-50°,∠BOE=x-90°,

    ∴∠AOC-∠BOE=x-50°)-(x-90°)=40°;

    (3)

    解:存在,

    ①当OA为∠DOC的平分线时,旋转角5t =DOC=25,

    t=5;

    ②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,

    t=20;

    ③当OD为∠COA的平分线时,360-5t=∠DOC=50,

    t=62,

    综上,满足条件的t 的取值为5或20或62.

    【点睛】

    本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.

    5、(1)70°;(2)103°

    【分析】

    (1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;

    (2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.

    【详解】

    解:(1)

    中,

    (2)由圆周角定理,得

    【点睛】

    题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键.

     

    相关试卷

    2021学年第24章 圆综合与测试课时练习:

    这是一份2021学年第24章 圆综合与测试课时练习,共30页。

    沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份沪科版九年级下册第24章 圆综合与测试课后测评,共33页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课后练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共31页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map