终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆重点解析试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆重点解析试卷(精选含详解)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆重点解析试卷(精选含详解)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆重点解析试卷(精选含详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第24章 圆综合与测试达标测试

    展开

    这是一份数学第24章 圆综合与测试达标测试,共29页。


    沪科版九年级数学下册第24章圆重点解析

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下面的图形中既是轴对称图形又是中心对称图形的是(   

    A. B. C. D.

    2、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为(   

    A.45° B.60° C.90° D.120°

    3、下列图形中,是中心对称图形,但不是轴对称图形的是(   

    A. B. C. D.

    4、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(   

    A.平移 B.翻折 C.旋转 D.以上三种都不对

    5、如图,的直径,弦,垂足为,若,则   

    A.5 B.8 C.9 D.10

    6、如图,PAPB是⊙O的切线,AB是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为(  

    A.70° B.50° C.20° D.40°

    7、下列图形中,既是轴对称图形又是中心对称图形的是(      

    A. B. C. D.

    8、下列图形中,既是轴对称图形又是中心对称图形的是(  )

    A. B. 

    C.  D.

    9、如图,是△ABC的外接圆,已知,则的大小为(     

    A.55° B.60° C.65° D.75°

    10、如图,直线x轴于点A,交y轴于点B,点Px轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.

    C. D.(﹣2,0)或(﹣5,0)

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、一个正多边形的中心角是,则这个正多边形的边数为________.

    2、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.

    3、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.

    4、如图所示,AB是⊙O的直径,弦CDABH,∠A=30°,OH=1,则⊙O的半径是______.

    5、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.

    2、如图,四边形的内接四边形,

    (1)求的度数.

    (2)求的度数.

    3、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BEFE,连接FC并延长交BE于点G

    (1)依题意补全图形;

    (2)求的度数;

    (3)连接GA,用等式表示线段GAGBGC之间的数量关系,并证明.

    4、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BCDC或其所在直线相交于点EF,连接EF

    (1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CBDC相交时,如图1所示,请直接写出线段BEDFEF满足的数量关系;

    (2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CBDC的延长线相交时,如图2所示,请直接写出线段BEDFEF满足的数量关系;

    (3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.

    5、如图,在等边三角形ABC中,点P为△ABC内一点,连接APBPCP,将线段AP绕点A 顺时针旋转60°得到 ,连接

    (1)用等式表示CP的数量关系,并证明;

    (2)当∠BPC=120°时,

    ①直接写出 的度数为      

    ②若MBC的中点,连接PM,请用等式表示PMAP的数量关系,并证明.

     

    -参考答案-

    一、单选题

    1、A

    【详解】

    解:A、既是轴对称图形又是中心对称图形,此项符合题意;

    B、是中心对称图形,不是轴对称图形,此项不符题意;

    C、是轴对称图形,不是中心对称图形,此项不符题意;

    D、是轴对称图形,不是中心对称图形,此项不符题意;

    故选:A.

    【点睛】

    本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.

    2、B

    【分析】

    设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.

    【详解】

    解:设∠ADC=α,∠ABC=β

    ∵四边形ABCO是菱形,

    ∴∠ABC=∠AOC

    ADC=β

    四边形为圆的内接四边形,

    α+β=180°,

    解得:β=120°,α=60°,则∠ADC=60°,

    故选:B.

    【点睛】

    该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.

    3、B

    【分析】

    根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.

    【详解】

    解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;

    B、是中心对称图形但不是轴对称图形,故符合题意;

    C、既不是轴对称图形也不是中心对称图形,故不符合题意;

    D、是轴对称图形但不是中心对称图形,故不符合题意;

    故选B.

    【点睛】

    本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.

    4、C

    【详解】

    解:根据图形可知,这种图形的运动是旋转而得到的,

    故选:C.

    【点睛】

    本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.

    5、C

    【分析】

    连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得

    【详解】

    解:如图,连接

    的直径,弦

    的半径为,则

    中,

    解得

    故选C

    【点睛】

    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    6、D

    【分析】

    首先连接OAOB,由PAPB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.

    【详解】

    解:连接OAOB

    PAPB为⊙O的切线,

    ∴∠OAP=∠OBP=90°,

    ∵∠ACB=70°,

    ∴∠AOB=2∠P=140°,

    ∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.

    故选:D

    【点睛】

    此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.

    7、D

    【详解】

    解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

    .不是轴对称图形,是中心对称图形,故本选项不符合题意;

    .是轴对称图形,不是中心对称图形,故本选项不符合题意;

    .既是轴对称图形,又是中心对称图形,故本选项符合题意.

    故选:D.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    8、B

    【详解】

    解:A.是轴对称图形,不是中心对称图形,故不符合题意;

    B.既是轴对称图形,又是中心对称图形,故符合题意;

    C.不是轴对称图形,是中心对称图形,故不符合题意;

    D.是轴对称图形,不是中心对称图形,故不符合题意.

    故选:B.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    9、C

    【分析】

    OA=OB,求出∠AOB=130°,根据圆周角定理求出的度数.

    【详解】

    解:∵OA=OB

    ∴∠BAO=

    ∴∠AOB=130°.

    =AOB=65°.

    故选:C

    【点睛】

    此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.

    10、C

    【分析】

    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PDABPD=1,根据相似三角形的性质即可得到结论.

    【详解】

    解:∵直线x轴于点A,交y轴于点B

    ∴令x=0,得y=-3,令y=0,得x=-4,

    A(-4,0),B(0,-3),

    OA=4,OB=3,

    AB=5,

    设⊙P与直线AB相切于D

    连接PD

    PDABPD=1,

    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO

    ∴△APD∽△ABO

    AP=

    OP= OP=

    PP

    故选:C.

    【点睛】

    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.

    二、填空题

    1、九9

    【分析】

    根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.

    【详解】

    解:设这个正多边形的边数为n

    ∵这个正多边形的中心角是40°,

    ∴这个正多边形是九边形,

    故答案为:九.

    【点睛】

    本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.

    2、

    【分析】

    绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.

    【详解】

    解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是

    故答案为:

    【点睛】

    本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.

    3、

    【分析】

    设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.

    【详解】

    解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为

    根据题意可得:

    解得:

    故答案是:

    【点睛】

    本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.

    4、2

    【分析】

    连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.

    【详解】

    解:连接OC

    OA=OC,∠A=30°,

    ∴∠COH=2∠A=60°,

    ∵弦CDABH

    ∴∠OHC=90°,

    ∴∠OCH=30°,

    OH=1,

    OC=2OH=2,

    故答案为:2.

    【点睛】

    本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.

    5、

    【分析】

    由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为

    【详解】

    是一个圆锥在某平面上的正投影

    为等腰三角形

    ADBC

    中有

    由圆锥侧面积公式有

    故答案为:

    【点睛】

    本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为

    三、解答题

    1、2+

    【分析】

    连接ACCMAB,过点CCHOAH,设OC=a.利用勾股定理构建方程解决问题即可.

    【详解】

    解:连接ACCMAB,过点CCHOAH,设OC=a

    ∵∠AOB=90°,

    AB是直径,

    A(-4,0),B(0,2),

    ∵∠AMC=2∠AOC=120°,

    RtCOH中,

    RtACH中,AC2=AH2+CH2

    a=2+ 或2-(因为OCOB,所以2-舍弃),

    OC=2+

    故答案为:2+

    【点睛】

    本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.

    2、(1)70°;(2)103°

    【分析】

    (1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;

    (2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.

    【详解】

    解:(1)

    中,

    (2)由圆周角定理,得

    【点睛】

    题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键.

    3、

    (1)见解析;

    (2)

    (3)

    【分析】

    (1)根据题意补全图形即可;

    (2)根据旋转的性质可得,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明

    (3)过点,证明,进而根据勾股定理以及线段的转换即可得到

    (1)

    如图,

    (2)

    将线段AE绕点A逆时针旋转90°,得到线段AF

    ,

    ,

    (3)

    证明如下,如图,过点

    ,

    【点睛】

    本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.

    4、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为

    【分析】

    (1)延长FDG,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;

    (2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAFEAF即可;

    (3)分两种情形分别求解即可解决问题.

    【详解】

    解:(1)结论:EF=BE+DF

    理由:延长FDG,使DG=BE,连接AG,如图①,

    ABCD是正方形,

    AB=AD,∠ABE=ADG=∠DAB=90°,

    ∴△ABE≌△ADGAAS),

    AE=AG,∠DAG=∠EAB

    ∵∠EAF=45°,

    ∴∠DAF+∠EAB=45°,

    ∴∠DAF+∠DAG=45°,

    ∴∠GAF=∠EAF=45°,

    AF=AF

    ∴△GAF≌△EAFAAS),

    EF=GF

    GF=DF+DG=DF+BE

    即:EF=DF+BE

    (2)结论:EF=DF-BE

    理由:在DC上截取DH=BE,连接AH,如图②,

    AD=AB,∠ADH=∠ABE=90°,

    ∴△ADH≌△ABESAS),

    AH=AE,∠DAH=∠EAB

    ∵∠EAF=∠EAB+∠BAF=45°,

    ∴∠DAH+∠BAF=45°,

    ∴∠HAF=45°=∠EAF

    AF=AF

    ∴△HAFEAFSAS),

    HF=EF

    DF=DH+HF

    EF=DF-BE

    (3)①当MA经过BC的中点E时,同(1)作辅助线,如图:

    FD=x,由(1)的结论得FG=EF=2+xFC=4-x

    RtEFC中,(x+2)2=(4-x2+22

    x=

    EF=x+2=

    ②当NA经过BC的中点G时,同(2)作辅助线,

    BE=x,由(2)的结论得EC=4+xEF=FH

    KBC边的中点,

    CK=BC=2,

    同理可证△ABKFCKSAS),

    CF=AB=4,EF=FH=CF+CD-DH=8-x

    RtEFC中,由勾股定理得到:(4+x2+42=(8-x2

    x=

    EF=8-=

    综上,线段EF的长为

    【点睛】

    本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.

    5、(1),理由见解析;(2)①60°;②PM,见解析

    【分析】

    (1)根据等边三角形的性质,可得ABAC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;

    (2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;

    ②延长PMN,使得NMPM,连接BN.可先证得△PCM≌△NBM.从而得到CPBN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.

    【详解】

    解:(1) .理由如下:

    在等边三角形ABC中,ABAC,∠BAC=60°,

    由旋转可知: 

    和△ACP

    (2)①∵∠BPC=120°,

    ∴∠PBC+∠PCB=60°.

    ∵在等边三角形ABC中,∠BAC=60°,

    ∴∠ABC+∠ACB=120°,

    ∴∠ABP+∠ACP=60°.

    ∴∠ABP+∠ABP'=60°.

    PM .理由如下:

    如图,延长PMN,使得NMPM,连接BN

    MBC的中点,

    BMCM

    在△PCM和△NBM

    ∴△PCM≌△NBMSAS).

    CPBN,∠PCM=∠NBM

    ∵∠BPC=120°,

    ∴∠PBC+∠PCB=60°.

    ∴∠PBC+∠NBM=60°.

    即∠NBP=60°.

    ∵∠ABC+∠ACB=120°,

    ∴∠ABP+∠ACP=60°.

    ∴∠ABP+∠ABP'=60°.

    在△PNB

    SAS).

     

    为等边三角形,

    PM

    【点睛】

    本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.

     

    相关试卷

    九年级下册第24章 圆综合与测试精练:

    这是一份九年级下册第24章 圆综合与测试精练,共27页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课后复习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后复习题,共27页。试卷主要包含了如图,是的直径,,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试当堂达标检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共31页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map