沪科版九年级下册第24章 圆综合与测试当堂检测题
展开
这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共33页。
沪科版九年级数学下册第24章圆定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形中,既是中心对称图形又是抽对称图形的是( )
A. B. C. D.
2、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
3、下列图形中,可以看作是中心对称图形的是( )
A. B.
C. D.
4、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )
A.1 B.2 C.3 D.4
5、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
6、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
C.直径是最长的弦 D.垂直于弦的直径平分这条弦
7、下列图形中,既是中心对称图形也是轴对称图形的是( )
A. B. C. D.
8、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
9、如图,AB,CD是⊙O的弦,且,若,则的度数为( )
A.30° B.40° C.45° D.60°
10、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
A.它们的开口方向相同 B.它们的对称轴相同
C.它们的变化情況相同 D.它们的顶点坐标相同
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一次函数y=kx+8(k≠0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 ___.
2、AB是的直径,点C在上,,点P在线段OB上运动.设,则x的取值范围是________.
3、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.
4、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.
5、如图,、分别与相切于A、B两点,若,则的度数为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.
(1)依题意补全图形;
(2)求的度数;
(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.
2、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:
(1)当时,求的值;
(2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
(3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.
3、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .
(1)用等式表示 与CP的数量关系,并证明;
(2)当∠BPC=120°时,
①直接写出 的度数为 ;
②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.
4、综合与实践
“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.
使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.
为了说明这一方法的正确性,需要对其进行证明.
独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.
已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.
探究解决:(2)请完成证明过程.
应用实践:(3)若半圆的直径为,,求的长度.
5、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.
-参考答案-
一、单选题
1、B
【详解】
解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.既是轴对称图形,也是中心对称图形,故此选项符合题意;
.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、C
【分析】
由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
3、C
【分析】
根据中心对称图形的定义进行逐一判断即可.
【详解】
解:A、不是中心对称图形,故此选项不符合题意;
B、不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,故此选项符合题意;
D、不是中心对称图形,故此选项不符合题意;
故选C.
【点睛】
本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
4、B
【分析】
由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.
【详解】
由题意以及旋转的性质知AD=AB,∠BAD=60°
∴∠ADB=∠ABD
∵∠ADB+∠ABD+∠BAD=180°
∴∠ADB=∠ABD=60°
故为等边三角形,即AB= AD =BD=2
则CD=BC-BD=4-2=2
故选:B.
【点睛】
本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.
5、D
【分析】
根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
【详解】
∵人工湖面积尽量小,
∴圆以AB为直径构造,设圆心为O,
过点B作BC ⊥,垂足为C,
∵A,P分别位于B的西北方向和东北方向,
∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
∴OC=CB=CP=20,
∴OP=40,OB==,
∴最小的距离PE=PO-OE=40 - 20(m),
故选D.
【点睛】
本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
6、A
【分析】
定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
【详解】
A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
B、C选项,根据圆的定义可以得到;
D选项,是垂径定理;
故选:A
【点睛】
本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
7、A
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,不是轴对称图形,故此选项不符合题意;
D、是中心对称图形,不是轴对称图形,故此选项不符合题意.
故选:A.
【点睛】
本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
8、C
【详解】
解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
选项B不是轴对称图形,是中心对称图形,故B不符合题意;
选项C既是轴对称图形,也是中心对称图形,故C符合题意;
选项D是轴对称图形,不是中心对称图形,故D不符合题意;
故选C
【点睛】
本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
9、B
【分析】
由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.
【详解】
解:∵,
∴,
∵,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.
10、B
【分析】
根据旋转的性质及抛物线的性质即可确定答案.
【详解】
抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
故选:B
【点睛】
本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
二、填空题
1、8
【分析】
根据一次函数解析式可得:,,过点B作轴,过点A作,过点Q作,由旋转的性质可得,,依据全等三角形的判定定理及性质可得:ΔMAB≅ΔNBQ,,,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可.
【详解】
解:函数得:,,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:
将线段BA绕点B逆时针旋转得到线段BQ,
∴,,
∴
∴,
在ΔMAB与ΔNBQ中,
,
∴ΔMAB≅ΔNBQ,
∴,,
点Q的坐标为,
∴
当或时,取得最小值为8,
故答案为:8.
【点睛】
题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.
2、
【分析】
分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.
【详解】
解:当点P与点O重合时,
∵OA=OC,
∴,即;
当点P与点B重合时,
∵AB是的直径,
∴,
∴x的取值范围是.
【点睛】
此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.
3、2
【分析】
根据扇形的面积公式S=,代入计算即可.
【详解】
解:∵“完美扇形”的周长等于6,
∴半径r为=2,弧长l为2,
这个扇形的面积为:==2.
答案为:2.
【点睛】
本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.
4、##
【分析】
如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.
【详解】
解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点
∵点C的坐标为(2,2),圆C与x轴相切于点A,
∴点A的坐标为(2,0),
∴OA=OD=2,即O是AD的中点,
又∵M是AB的中点,
∴OM是△ABD的中位线,
∴,
∴当BD最小时,OM也最小,
∴当B运动到时,BD有最小值,
∵C(2,2),D(-2,0),
∴,
∴,
∴,
故答案为:.
【点睛】
本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.
5、
【分析】
根据已知条件可得出,,再利用圆周角定理得出即可.
【详解】
解:、分别与相切于、两点,
,,
,
,
.
故答案为:.
【点睛】
本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.
三、解答题
1、
(1)见解析;
(2)
(3)
【分析】
(1)根据题意补全图形即可;
(2)根据旋转的性质可得,,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;
(3)过点作,证明,进而根据勾股定理以及线段的转换即可得到
(1)
如图,
(2)
将线段AE绕点A逆时针旋转90°,得到线段AF,
,
,
又
即
(3)
证明如下,如图,过点作,
又,
又
,
即
【点睛】
本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.
2、
(1);
(2),0≤x≤1;
(3)AE的值为或.
【分析】
(1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
(2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
(3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
(1)
解:过点E作EH⊥BD与H,
∵正方形的边长为1,,
∴EB=1-,
∵BD为正方形对角线,
∴BD平分∠ABC,
∴∠ABD=45°,
∵EH⊥BD,
∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
∴EH=BH,
∴EH=BH=BEsin45=,AB=BDcos45°,
∴,
∴DH=DB-BH=,
;
(2)
解:如上图,∵AE=x,
∴BE=1-x,
∵将△ADE绕点D针旋转90°,得到△DCF,
∴CF=AE=x,ED=FD=,
∴BF=BC+CF=1+x,
在Rt△EBF中EF=,
∵∠EDF=90°,ED=FD,
∴△DEF为等腰直角三角形,
∴∠DFE=∠DEF=45°,
∴∠EBM=∠MFD=45°,
∵∠EMB=∠DMF,
∴△BEM∽△FDM,
∴,即,
∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
∴△EMD∽△BMF,
∴,即,
∴,
∴,
∴即,
∴,0≤x≤1;
(3)
解:当点G在BC上,,
∵四边形ABCD为正方形,
∴AD∥BG,
∴∠DAM=∠BGM,∠ADM=∠GBM,
∴△BGM∽△DAM,
∴,
∵由(2)知△BEM∽△FDM,
∴,
∵DB=,
∴,
∴,
∴,
∵,
∴即,
解,舍去;
当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
∵GB∥AD,
∴∴∠DAM=∠BGM,∠ADM=∠GBM,
∴△BGM∽△DAM,
∴,
∴,
∴,
∵∠LBM=∠CBD=45°,ML⊥BC,
∴△MLB为等腰直角三角形,
∵ML∥CD,
∴∠LMB=∠CDB,∠L=∠DCB,
∴△MLB∽△DCB,
∴,CD=1,
∴ML=
∵ML∥BE,
∴∠L=∠FBE,∠LMF=∠BEF,
∴△LMF∽△BEF,
∴,
∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
∴,
整理得:,
解得,舍去,
∴AE的值为或.
【点睛】
本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.
3、(1),理由见解析;(2)①60°;②PM=,见解析
【分析】
(1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;
(2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;
②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.
【详解】
解:(1) .理由如下:
在等边三角形ABC中,AB=AC,∠BAC=60°,
由旋转可知:
∴
即
在和△ACP中
∴ .
∴ .
(2)①∵∠BPC=120°,
∴∠PBC+∠PCB=60°.
∵在等边三角形ABC中,∠BAC=60°,
∴∠ABC+∠ACB=120°,
∴∠ABP+∠ACP=60°.
∵ .
∴ ,
∴∠ABP+∠ABP'=60°.
即 ;
②PM= .理由如下:
如图,延长PM到N,使得NM=PM,连接BN.
∵M为BC的中点,
∴BM=CM.
在△PCM和△NBM中
∴△PCM≌△NBM(SAS).
∴CP=BN,∠PCM=∠NBM.
∴ .
∵∠BPC=120°,
∴∠PBC+∠PCB=60°.
∴∠PBC+∠NBM=60°.
即∠NBP=60°.
∵∠ABC+∠ACB=120°,
∴∠ABP+∠ACP=60°.
∴∠ABP+∠ABP'=60°.
即 .
∴ .
在△PNB和 中
∴ (SAS).
∴ .
∵
∴ 为等边三角形,
∴ .
∴ ,
∴PM= .
【点睛】
本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.
4、(1),,将三等分;(2)见解析;(3)
【分析】
(1)根据题意即可得;
(2)先证明与全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;
(3)连,延长与相交于点,由(2)结论可得,再由切线的性质,,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得.
【详解】
解:(1),,将三等分,
故答案为:;,将三等分,
(2)证明:在与中,
,
,
.
,
是的切线.
、都是的切线,
,
,
,将三等分.
(3)如图,连,延长与相交于点,
由(2),知.
是的切线,
,
,.
∵半径,
∴由勾股定理得,在中,
,,
.
∵,
,
,
,即,
.
【点睛】
题目主要考查全等三角形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键.
5、见解析
【分析】
由题意易得AB⊥CD,,则有,由平行线的性质可得,然后可得,进而问题可求证.
【详解】
证明:∵AB为⊙O的直径,点E是弦CD的中点,
∴AB⊥CD,
∴,
∴,
∵CF∥BD,
∴,
∴,
∴.
【点睛】
本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.
相关试卷
这是一份初中沪科版第24章 圆综合与测试精练,共24页。
这是一份2020-2021学年第24章 圆综合与测试测试题,共29页。试卷主要包含了在圆内接四边形ABCD中,∠A,等边三角形等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共35页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。