终身会员
搜索
    上传资料 赚现金

    2021-2022学年沪科版九年级数学下册第24章圆定向练习试题(含解析)

    立即下载
    加入资料篮
    2021-2022学年沪科版九年级数学下册第24章圆定向练习试题(含解析)第1页
    2021-2022学年沪科版九年级数学下册第24章圆定向练习试题(含解析)第2页
    2021-2022学年沪科版九年级数学下册第24章圆定向练习试题(含解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试课时训练

    展开

    这是一份数学九年级下册第24章 圆综合与测试课时训练,共30页。试卷主要包含了如图,点A等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆定向练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点AB的对应点分别为DE,连接AD.当点ADE在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°

    2、如图,在中,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为(   

    A.1 B.2 C.3 D.4

    3、下列图形中,既是轴对称图形又是中心对称图形的是(  )

    A. B. 

    C.  D.

    4、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是(   

    A.1 B. C. D.2

    5、如图,ABCD是⊙O的弦,且,若,则的度数为(   

    A.30° B.40° C.45° D.60°

    6、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.

    7、如图,点ABC上,,则的度数是(   

    A.100° B.50° C.40° D.25°

    8、如图,四边形内接于,如果它的一个外角,那么的度数为(   

    A. B. C. D.

    9、下列四个图案中,是中心对称图形但不是轴对称图形的是(   

    A. B. C. D.

    10、的边经过圆心与圆相切于点,若,则的大小等于(   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.

    2、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OBOC,若弦BC的长度为,则∠BAC=________度.

    3、如图,四边形ABCD内接于圆,ECD延长线上一点, 图中与∠ADE相等的角是 _________ .

    4、如图,在平行四边形中,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留

    5、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.

    三、解答题(5小题,每小题10分,共计50分)

    1、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.

    (1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:

    ①直线y=2x+2;②直线y=﹣x+3;③双曲线y,是⊙O的关联图形的是    (请直接写出正确的序号).

    (2)如图2,⊙T的圆心为T(1,0),半径为1,直线ly=﹣x+bx轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.

    (3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HBHD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.

    2、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.

    已知:⊙O.

    求作:⊙O的内接等腰直角三角形ABC.

    作法:如图,

    ①作直径AB

    ②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;

    ③作直线MO交⊙O于点CD

    ④连接ACBC

    所以△ABC就是所求的等腰直角三角形.

    根据小明设计的尺规作图过程,解决下面的问题:

    (1)使用直尺和圆规,补全图形;(保留作图痕迹)

    (2)完成下面的证明.

    证明:连接MAMB

    MA=MBOA=OB

    MOAB的垂直平分线.

    AC=                 

    AB是直径,

    ∴∠ACB=        (                        ) (填写推理依据) .

    ∴△ABC是等腰直角三角形.

    3、在平面内,给定不在同一直线上的点ABC,如图所示.点O到点ABC的距离均等于rr为常数),到点O的距离等于r的所有点组成图形GABC的平分线交图形G于点D,连接ADCD.求证:AD=CD.

    4、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.

    圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.

    由圆周角定理,可以得到以下推论:推论1  90°的圆周角所对的弦是直径.(如图)

    (推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.

    求证:线段AB是⊙O的直径.

    请你结合图①写出推论1的证明过程.

    (深入探究)如图②,点ABCD均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为         

    (拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点EBC的中点,连结DE. 若AB,则DE的长为          

    5、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于BC两点,点B的坐标为,点D上,且,求OA的半径和圆心A的坐标.

    元元的做法如下,请你帮忙补全解题过程:

    解:如图2,连接BC.作AELOBEAFOCF

    (依据是   

    (依据是    ).

    ,.

    BC的直径(依据是    ).

    A的坐标为    的半径为   

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    根据三角形旋转得出,根据点ADE在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.

    【详解】

    证明:∵绕点C逆时针旋转得到

    ∴∠ADC=∠DAC

    ∵点ADE在同一条直线上,

    ∴∠DAC=50°,

    ∴∠BAD=∠BAC-∠DAC=80°

    故选A.

    【点睛】

    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.

    2、B

    【分析】

    由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.

    【详解】

    由题意以及旋转的性质知AD=AB,∠BAD=60°

    ∴∠ADB=∠ABD

    ∵∠ADB+∠ABD+∠BAD=180°

    ∴∠ADB=∠ABD=60°

    为等边三角形,即AB= AD =BD=2

    CD=BC-BD=4-2=2

    故选:B.

    【点睛】

    本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.

    3、B

    【详解】

    解:A.是轴对称图形,不是中心对称图形,故不符合题意;

    B.既是轴对称图形,又是中心对称图形,故符合题意;

    C.不是轴对称图形,是中心对称图形,故不符合题意;

    D.是轴对称图形,不是中心对称图形,故不符合题意.

    故选:B.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    4、B

    【分析】

    利用三角函数及勾股定理求出BC、AB,连接CD,过点CCEABE,利用,求出BE,根据垂径定理求出BD即可得到答案.

    【详解】

    解: 在Rt中,

    BC=3,

    连接CD,过点CCEABE

    解得

    CB=CDCEAB

    故选:B

    【点睛】

    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.

    5、B

    【分析】

    由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.

    6、D

    【分析】

    连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.

    【详解】

    解:连接OFOEOG

    AB、BC、CD分别与相切,

    ,且

    OB平分OC平分

    故选:D.

    【点睛】

    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    7、C

    【分析】

    先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.

    【详解】

    ∵∠ACB=50°,

    ∴∠AOB=100°,

    OA=OB

    ∴∠OAB=∠OBA= 40°,

    故选:C

    【点睛】

    本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

    8、D

    【分析】

    由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.

    【详解】

    ∵四边形内接于

    又∵

    故选:D.

    【点睛】

    本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.

    9、D

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是轴对称图形,是中心对称图形,故此选项不符合题意;

    D、不是轴对称图形,是中心对称图形,故此选项符合题意;

    故选:D.

    【点睛】

    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

    10、A

    【分析】

    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.

    【详解】

    解:连接

    与圆相切于点

    故选:A.

    【点睛】

    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.

    二、填空题

    1、##

    【分析】

    连接OAOC,先求出∠ABC的度数,然后得到∠AOC,再由弧长公式即可求出答案.

    【详解】

    解:连接OAOC,如图,

    ∵四边形ABCD是⊙O的内接四边形,∠D=110°,

    故答案为:

    【点睛】

    本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式

    2、60

    【分析】

    RtBOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.

    【详解】

    解:如图作OEBCE

    OEBC

    BE=EC=,∠BOE=∠COE

    OE=1,

    OB=2OE

    ∴∠OBE=30°,

    ∴∠BOE=∠COE=60°,

    ∴∠BOC=120°,

    ∴∠BAC=60°,

    故答案为:60.

    【点睛】

    本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.

    3、∠ABC

    【分析】

    根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.

    【详解】

    解:∵四边形ABCD内接于圆,

    ECD延长线上一点,

    故答案为:

    【点睛】

    题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.

    4、

    【分析】

    过点C于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.

    【详解】

    解:过点C于点H

    在平行四边形中,

    平行四边形的面积为:

    图中黑色阴影部分的面积为:

    故答案为:

    【点睛】

    本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.

    5、相切或相交

    【详解】

    首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案.

    【分析】

    解:∵x2﹣5x+6=0,

    x﹣2)(x﹣3)=0,

    解得:x1=2,x2=3,

    ∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,

    ∴当半径为2时,直线l与圆O的的位置关系是相切,

    当半径为3时,直线l与圆O的的位置关系是相交,

    综上所述,直线l与圆O的的位置关系是相切或相交.

    故答案为:相切或相交.

    【点睛】

    本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.

    三、解答题

    1、(1)①③;(2)N的横坐标;(3)

    【分析】

    (1)在坐标系中作出圆及三个函数图象,即可得;

    (2)根据题意可得直线l的临界状态是与圆T相切的两条直线,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;

    (3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BPDQ,交于点H;②当点P在点Q的上方时,直线BPDQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.

    【详解】

    解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,

    故答案为:①③;

    (2)如图所示:

    ∵直线l的关联直线,

    ∴直线l的临界状态是与相切的两条直线

    当临界状态为时,连接TM

    ∵当时,

    时,

    为等腰直角三角形,

    ∴点

    同理可得当临界状态为时,

    N的横坐标

    (3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BPDQ,交于点H

    设点,直线HB的解析式为,直线HD的解析式为

    时,互为相反数,可得

    由图可得:,则

    结合

    解得:

    时,

    h的最大值为

    ②如图所示:当点P在点Q的上方时,直线BPDQ,交于点H,当圆心Ix轴上时,

    设点,直线HB的解析式为,直线HD的解析式为

    时,互为相反数,可得

    由图可得:,则

    结合

    解得:

    时,

    h的最小值为

    ③当时,两条直线与圆无公共点,不符合题意,

    综上可得:

    【点睛】

    题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.

    2、(1)见解析;(2)BC,90°,直径所对的圆周角是直角

    【分析】

    (1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点CD;连结ACBC即可;

    (2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.

    【详解】

    (1)①作直径AB

    ②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;

    ③作直线MO交⊙O于点CD

    ④连接ACBC

    所以△ABC就是所求的等腰直角三角形.

    (2)证明:连接MAMB

    MA=MBOA=OB

    MOAB的垂直平分线.

    AC=BC

    AB是直径,

    ∴∠ACB=90°(直径所对的圆周角是直角) .

    ∴△ABC是等腰直角三角形.

    故答案为:BC,90°,直径所对的圆周角是直角.

    【点睛】

    本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.

    3、见解析

    【分析】

    由题意画图,再根据圆周角定理的推论即可得证结论.

    【详解】

    证明:根据题意作图如下:

    BD是圆周角ABC的角平分线,

    ∴∠ABD=∠CBD

    AD=CD

    【点睛】

    本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.

    4、【推论证明】见解析;【深入探究】;【拓展应用】

    【分析】

    推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;

    深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;

    拓展应用:连接AE,作CFDEDE于点F,首先根据等边三角形三线合一的性质求出,然后证明出AECD四点共圆,然后根据同弧或等弧所对的圆周角相等求出,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.

    【详解】

    解:推论证明:∵

    ABO三点共线,

    又∵点O是圆心,

    AB是⊙O的直径;

    深入探究:如图所示,连接AB

    ∵∠ACB=90°

    AB是⊙O的直径

    ∵∠ACD=60°

    ∴在中,

    拓展应用:如图所示,连接AE,作CFDEDE于点F

    ∵△ABC是等边三角形,点EBC的中点

    又∵以AC为底边在三角形ABC外作等腰直角三角形ACD

    ∴点AECD四点都在以AC为直径的圆上,

    CFDE

    是等腰直角三角形

    ,解得:

    ∴在中,

    【点睛】

    此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.

    5、垂径定理,圆周角定理,圆周角定理,(1,),2

    【分析】

    根据垂径定理,圆周角定理依次分析解答.

    【详解】

    解:如图2,连接BC.作AEOBEAFOCF

    (依据是垂径定理)

    (依据是圆周角定理).

    ,.

    BC的直径(依据是圆周角定理).

    A的坐标为(1,),的半径为2,

    故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2.

    【点睛】

    此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键.

     

    相关试卷

    沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份沪科版九年级下册第24章 圆综合与测试一课一练,共26页。试卷主要包含了将一把直尺等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共30页。试卷主要包含了将一把直尺等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课时训练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共30页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map