终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年沪科版九年级数学下册第24章圆章节练习试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年沪科版九年级数学下册第24章圆章节练习试题(含详细解析)第1页
    2021-2022学年沪科版九年级数学下册第24章圆章节练习试题(含详细解析)第2页
    2021-2022学年沪科版九年级数学下册第24章圆章节练习试题(含详细解析)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第24章 圆综合与测试巩固练习

    展开

    这是一份2020-2021学年第24章 圆综合与测试巩固练习,共36页。
    沪科版九年级数学下册第24章圆章节练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )

    A.20 m B.20m
    C.(20 - 20)m D.(40 - 20)m
    2、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )

    A.3 B. C. D.
    3、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )

    A..等腰三角形 B.等边三角形
    C..直角三角形 D..等腰直角三角形
    4、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
    A. B.
    C. D.
    5、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )

    A. B.
    C. D.
    6、在下列图形中,既是中心对称图形又是轴对称图形的是( )
    A. B.
    C. D.
    7、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°
    8、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )

    A. B. C. D.
    9、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
    A.3π B.6π C.12π D.18π
    10、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )

    A.1cm B.2cm C.3cm D.4cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.

    2、如果点与点B关于原点对称,那么点B的坐标是______.
    3、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________.

    4、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.

    5、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AB为⊙O的弦,OC⊥AB于点M,交⊙O于点C.若⊙O的半径为10,OM:MC=3:2,求AB的长.

    2、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
    已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.

    (1)求弦AC的长.
    (2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
    (3)当OE=1时,求点A与点D之间的距离(直接写出答案).
    3、已知:如图,A为上的一点.

    求作:过点A且与相切的一条直线.
    作法:①连接OA;
    ②以点A为圆心,OA长为半径画弧,与的一个交点为B,作射线OB;
    ③以点B为圆心,OA长为半径画弧,交射线OB于点P(不与点O重合);
    ④作直线PA.
    直线PA即为所求.
    (1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
    (2)完成下面的证明.
    证明:连接BA.
    由作法可知.
    ∴点A在以OP为直径的圆上.
    ∴( )(填推理的依据).
    ∵OA是的半径,
    ∴直线PA与相切( )(填推理的依据).
    4、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.

    (1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.
    ①求证:BE平分∠AEC.
    ②取BC的中点P,连接PH,求证:PHCG.
    ③若BC=2AB=2,求BG的长.
    (2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.
    5、如图,抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC.

    (1)求a的值;
    (2)点D是该抛物线的顶点,点P(m,n)是第三象限内抛物线上的一个点,分别连接BD、BC、CD、BP,当∠PBA=∠CBD时,求m的值;
    (3)点K为坐标平面内一点,DK=2,点M为线段BK的中点,连接AM,当AM最大时,求点K的坐标.

    -参考答案-
    一、单选题
    1、D
    【分析】
    根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
    【详解】
    ∵人工湖面积尽量小,

    ∴圆以AB为直径构造,设圆心为O,
    过点B作BC ⊥,垂足为C,
    ∵A,P分别位于B的西北方向和东北方向,
    ∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
    ∴OC=CB=CP=20,
    ∴OP=40,OB==,
    ∴最小的距离PE=PO-OE=40 - 20(m),
    故选D.
    【点睛】
    本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
    2、A
    【分析】
    分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
    【详解】
    解:连接BO,并延长交⊙O于D,连结DC,
    ∵∠A=30°,
    ∴∠D=∠A=30°,
    ∵BD为直径,
    ∴∠BCD=90°,
    在Rt△BCD中,BC=3,∠D=30°,
    ∴BD=2BC=6,
    ∴OB=3.
    故选A.

    【点睛】
    本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
    3、D
    【分析】
    根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
    【详解】
    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
    ∴∠ECF=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    故选:D.
    【点睛】
    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
    4、D
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、A
    【分析】
    设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
    【详解】
    解:设正六边形的边长为1,当在上时,
    过作于 而




    当在上时,延长交于点 过作于

    同理:
    则为等边三角形,



    当在上时,连接

    由正六边形的性质可得:

    由正六边形的对称性可得: 而


    由正六边形的对称性可得:在上的图象与在上的图象是对称的,
    在上的图象与在上的图象是对称的,
    所以符合题意的是A,
    故选A
    【点睛】
    本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
    6、B
    【分析】
    根据中心对称图形与轴对称图形的定义解答即可.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,不符合题意;
    B既是中心对称图形又是轴对称图形,符合题意;
    C. 是轴对称图形,不是中心对称图形,不符合题意;
    D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
    故选B.
    【点睛】
    本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
    7、A
    【分析】
    根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
    【详解】
    证明:∵绕点C逆时针旋转得到,
    ∴,,
    ∴∠ADC=∠DAC,
    ∵点A,D,E在同一条直线上,
    ∴,
    ∴∠DAC=50°,
    ∴∠BAD=∠BAC-∠DAC=80°
    故选A.
    【点睛】
    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
    8、A
    【分析】
    如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
    【详解】
    解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
    记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:

    四边形为正方形,则

    设 而AB=2,CD=3,EF=5,结合正方形的性质可得:




    又 而


    解得:

    故选A
    【点睛】
    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
    9、B
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    10、B
    【分析】
    连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
    【详解】
    解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:

    ∵AB=8cm,
    ∴BD=AB=4(cm),
    由题意得:OB=OC==5cm,
    在Rt△OBD中,OD=(cm),
    ∴CD=OC-OD=5-3=2(cm),
    即水的最大深度为2cm,
    故选:B.
    【点睛】
    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    二、填空题
    1、
    【分析】
    过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且∠AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离.
    【详解】
    解:过O作OC⊥AB,则有C为AB的中点,

    ∵OA=OB,∠AOB=90°,AB=a,
    ∴根据勾股定理得: OA2+OB2=AB,
    ∴OA=,
    在Rt△AOC中,OA=,AC=AB=,
    根据勾股定理得:OC==.
    故答案为:;
    【点睛】
    此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
    2、
    【分析】
    关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.
    【详解】
    解:由题意知点B横坐标为;纵坐标为;
    故答案为:.
    【点睛】
    本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.
    3、4
    【分析】
    由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.
    【详解】
    ∵⊙O的周长为8π
    ∴⊙O半径为4
    ∵正六边形ABCDEF内接于⊙O
    ∴正六边形ABCDEF中心角为
    ∴正六边形ABCDEF为6个边长为4的正三角形组成的
    ∴正六边形ABCDEF边长为4.
    故答案为:4.
    【点睛】
    本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.
    4、
    【分析】
    设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.
    【详解】
    解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,
    根据题意可得:,
    解得:,
    故答案是:.
    【点睛】
    本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.
    5、35°
    【分析】
    利用圆周角定理求出所求角度数即可.
    【详解】
    解:与都对,且,

    故答案为:.
    【点睛】
    本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.
    三、解答题
    1、
    【分析】
    连接OA,根据⊙O的半径为10,OM:MC=3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可.
    【详解】
    解:如图,连接OA.

    ∵OM:MC=3:2,OC=10,
    ∴OM==6.
    ∵OC⊥AB,
    ∴∠OMA=90°,AB=2AM.
    在Rt△AOM中,AO=10,OM=6,
    ∴AM=8.
    ∴AB=2AM =16.
    【点睛】
    本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.
    2、
    (1)8
    (2)
    (3)或.
    【分析】
    (1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;
    (2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;
    (3)分两种情况讨论,由相似三角形和勾股定理可求解.
    (1)
    如图2,过点O作OH⊥AC于点H,

    由垂径定理得:AH=CH=AC,
    在Rt△OAH中,,
    ∴设OH=3x,AH=4x,
    ∵OH2+AH2=OA2,
    ∴(3x)2+(4x)2=52,
    解得:x=±1,(x=﹣1舍去),
    ∴OH=3,AH=4,
    ∴AC=2AH=8;
    (2)
    如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,

    ∵∠DEO=∠AEC,
    ∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;


    ∴∠ACD≠∠DOE
    ∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,
    ∴当△DOE与△AEC相似时,∠DOE=∠A,
    ∴OD∥AC,
    ∴,
    ∵OD=OA=5,AC=8,
    ∴,
    ∴,
    ∵∠AGE=∠AHO=90°,
    ∴GE∥OH,

    ∴△AEG∽△AOH,
    ∴,
    ∴,
    ∴,
    ∴,,
    在Rt△CEG中,;
    (3)
    当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,

    由(1)可得 OH=3,AH=4,AC=8,
    ∵OE=1,
    ∴AE=4,ME=6,
    ∵EG∥OH,
    ∴△AEG∽△AOH,
    ∴,
    ∴AG=,EG=,
    ∴GC=,
    ∴EC===,
    ∵AM是直径,
    ∴∠ADM=90°=∠EGC,
    又∵∠M=∠C,
    ∴△EGC∽△ADM,
    ∴,
    ∴,
    ∴AD=2;
    当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,

    同理可求EG=,AG=,AE=6,GC=,
    ∴EC===,
    ∵AM是直径,
    ∴∠ADM=90°=∠EGC,
    又∵∠M=∠C,
    ∴△EGC∽△ADM,
    ∴,
    ∴,
    ∴AD=,
    综上所述:AD的长是或
    【点睛】
    本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.
    3、(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理
    【分析】
    (1)根据所给的几何语言作出对应的图形即可;
    (2)根据圆周角定理和切线的判定定理解答即可.
    【详解】
    解:(1)补全图形如图所示,直线AP即为所求作;

    (2)证明:连接BA,
    由作法可知,
    ∴点A在以OP为直径的圆上,
    ∴(直径所对的圆周角是直角),
    ∵OA是的半径,
    ∴直线PA与相切(切线的判定定理),
    故答案为:直径所对的圆周角是直角,切线的判定定理.

    【点睛】
    本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键.
    4、
    (1)①见解析;②见解析;③
    (2)
    【分析】
    (1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;
    ②如图1,过点作的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;
    ③如图2,过点作的垂线,解直角三角形即可得到结论.
    (2)如图3,连接,,过作交的延长线于,交的延长线于,根据旋转的性质得到,,解直角三角形得到,,根据三角形的面积公式即可得到结论.
    (1)
    解:①证明:矩形绕着点按顺时针方向旋转得到矩形,


    又,


    平分;
    ②证明:如图1,过点作的垂线,

    平分,,,


    ,,,


    即点是中点,
    又点是中点,

    ③解:如图2,过点作的垂线,







    ,,

    (2)
    解:如图3,连接,,过作交的延长线于,交的延长线于,



    将矩形绕着点按顺时针方向旋转得到矩形,
    ,,
    点,,第二次在同一直线上,




    ,,
    ,,
    ,,

    【点睛】
    本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.
    5、
    (1)
    (2)
    (3)
    【分析】
    (1)先求得,点的坐标,进而根据即可求得的值;
    (2)过点作轴于点,证明是直角三角形,进而,根据相似的性质列出比例式进而代入点的坐标解方程即可;
    (3)接,取的中点,连接,根据题意,点在以为圆心,2为半径的圆上,则在以为圆心,为半径的圆上运动,根据点与圆的距离求最值,进而求得的解析式为,根据,设直线的解析式为,将点代入求得,进而设,根据,进而根据勾股定理列出方程解方程求解即可.
    (1)

    令,解得
    令,
    抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,
    抛物线与轴的交点为





    解得
    (2)
    如图,过点作轴于点,







    是直角三角形,且





    在抛物线上,



    整理得
    解得(舍)
    在第三象限,


    (3)
    如图,连接,取的中点,连接,

    是的中位线

    根据题意点在以为圆心,2为半径的圆上,
    则在以为圆心,为半径的圆上运动,
    当三点共线,且在的延长线上时,最大,如图,




    设直线的解析式为,代入点,

    解得
    直线的解析式为

    设直线的解析式为


    解得
    则的解析式为
    设点,


    解得(舍去)



    【点睛】
    本题考查了二次函数综合运用,点与圆的距离求最值问题,相似三角形的性质与判定,正确的添加辅助线并熟练掌握以上知识是解题的关键.

    相关试卷

    2021学年第24章 圆综合与测试精练:

    这是一份2021学年第24章 圆综合与测试精练,共33页。

    沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步训练题,共31页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课堂检测:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课堂检测,共25页。试卷主要包含了如图,一个宽为2厘米的刻度尺,下列判断正确的个数有,已知⊙O的半径为4,,则点A在,如图,是的直径,等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map