终身会员
搜索
    上传资料 赚现金

    2021-2022学年沪科版九年级数学下册第24章圆定向测评试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年沪科版九年级数学下册第24章圆定向测评试卷(精选含详解)第1页
    2021-2022学年沪科版九年级数学下册第24章圆定向测评试卷(精选含详解)第2页
    2021-2022学年沪科版九年级数学下册第24章圆定向测评试卷(精选含详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试巩固练习

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试巩固练习,共29页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆定向测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,四边形内接于,如果它的一个外角,那么的度数为(   

    A. B. C. D.

    2、如图,点ABC上,,则的度数是(   

    A.100° B.50° C.40° D.25°

    3、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是(   

    A.6 B. C.3 D.

    4、下列四个图案中,是中心对称图形的是(  )

    A. B.

    C. D.

    5、已知⊙O的半径为4,,则点A在(     

    A.⊙O B.⊙O C.⊙O D.无法确定

    6、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )

    A..等腰三角形 B.等边三角形

    C..直角三角形 D..等腰直角三角形

    7、下列各点中,关于原点对称的两个点是(  )

    A.(﹣5,0)与(0,5) B.(0,2)与(2,0)

    C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)

    8、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12

    9、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(   

    A.  B. 

    C.  D.

    10、下面的图形中既是轴对称图形又是中心对称图形的是(   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、AB的直径,点C上,,点P在线段OB上运动.设,则x的取值范围是________.

    2、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________.

    3、点(2,-3)关于原点的对称点的坐标为_____.

    4、如图,在⊙O中,ABC是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.

    5、将点x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.

    三、解答题(5小题,每小题10分,共计50分)

    1、阅读以下材料,并按要求完成相应的任务:

    从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:

    如下图1,在正方形中,以为顶点的边分别交于两点.易证得

    大致证明思路:如图2,将绕点顺时针旋转,得到,由可得三点共线,,进而可证明,故

     

    任务:

    如图3,在四边形中,,以为顶点的边分别交于两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.

    2、如图,的两条切线,切点分别为,连接并延长交于点,过点的切线交的延长线于点于点

    (1)求证:四边形是矩形;

    (2)若,求的长..

    3、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过ABC三点的抛物线上.

    (1)求抛物线的解析式;

    (2)求过ABC三点的圆的半径;

    (3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;

    4、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若PQ两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.

    已知点N(3,0),A(1,0),

    (1)①在点ABC中,线段ON的“二分点”是______;

    ②点Da,0),若点C为线段OD的“二分点”,求a的取值范围;

    (2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.

    5、如图,在等边中,DBC边上一点,连接AD,将沿AD翻折得到,连接BE延长交AD的延长线于点F,连接CF

    (1)若,求的度数;

    (2)若,求的大小;

    (3)猜想CFBFAF之间的数量关系,并证明.

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.

    【详解】

    ∵四边形内接于

    又∵

    故选:D.

    【点睛】

    本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.

    2、C

    【分析】

    先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.

    【详解】

    ∵∠ACB=50°,

    ∴∠AOB=100°,

    OA=OB

    ∴∠OAB=∠OBA= 40°,

    故选:C

    【点睛】

    本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

    3、D

    【分析】

    如图所示,设圆的圆心为O,连接OCOB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明RtOCARtOBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为

    【详解】

    解:如图所示,设圆的圆心为O,连接OCOB

    ACAB都是圆O的切线,

    ∴∠OCA=∠OBA=90°,OC=OB

    又∵OA=OA

    RtOCARtOBAHL),

    ∴∠OAC=∠OAB

    ∵∠DAC=60°,

    ∴∠AOB=30°,

    OA=2AB=6,

    ∴圆O的直径为

    故选D.

    【点睛】

    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.

    4、A

    【分析】

    中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.

    【详解】

    解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,

    故选:A.

    【点睛】

    本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.

    5、C

    【分析】

    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.

    【详解】

    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,

    d>r

    ∴点A在⊙O外,

    故选:C.

    【点睛】

    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr

    6、D

    【分析】

    根据旋转的性质推出相等的边CECF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.

    【详解】

    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,

    ∴∠ECF=90°,CECF

    ∴△CEF是等腰直角三角形,

    故选:D

    【点睛】

    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.

    7、D

    【分析】

    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.

    【详解】

    解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;

    B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;

    C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;

    D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;

    故选:D

    【点睛】

    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.

    8、D

    【分析】

    连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.

    【详解】

    解:连接OBOC

    ∵∠BAC=30°,

    ∴∠BOC=60°.

    OB=OCBC=6,

    ∴△OBC是等边三角形,

    OB=BC=6.

    ∴⊙O的直径等于12.

    故选:D.

    【点睛】

    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.

    9、C

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    A.是轴对称图形,不是中心对称图形,故此选项不合题意;

    B.不是轴对称图形,是中心对称图形,故此选项不符合题意;

    C.是轴对称图形,也是中心对称图形,故此选项合题意;

    D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.

    故选:C.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    10、A

    【详解】

    解:A、既是轴对称图形又是中心对称图形,此项符合题意;

    B、是中心对称图形,不是轴对称图形,此项不符题意;

    C、是轴对称图形,不是中心对称图形,此项不符题意;

    D、是轴对称图形,不是中心对称图形,此项不符题意;

    故选:A.

    【点睛】

    本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.

    二、填空题

    1、

    【分析】

    分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.

    【详解】

    解:当点P与点O重合时,

    OA=OC

    ,即

    当点P与点B重合时,

    AB的直径,

    x的取值范围是

    【点睛】

    此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.

    2、4

    【分析】

    由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.

    【详解】

    ∵⊙O的周长为8π

    ∴⊙O半径为4

    ∵正六边形ABCDEF内接于⊙O

    ∴正六边形ABCDEF中心角为

    ∴正六边形ABCDEF为6个边长为4的正三角形组成的

    ∴正六边形ABCDEF边长为4.

    故答案为:4.

    【点睛】

    本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.

    3、 (-2,3)

    【分析】

    根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解.

    【详解】

    点(2,-3)关于原点的对称点的坐标是(-2,3).

    故答案为: (-2,3).

    【点睛】

    本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系.

    4、35°

    【分析】

    利用圆周角定理求出所求角度数即可.

    【详解】

    解:都对,且

    故答案为:

    【点睛】

    本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.

    5、

    【分析】

    设点G的坐标为,过点A轴交于点M,过点轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.

    【详解】

    设点G的坐标为,过点A轴交于点M,过点轴交于点N

    如图所示:

    ∵点A绕点G顺时针旋转90°后得到点

    轴,轴,

    中,

    中,由勾股定理得:

    解得:

    故答案为:

    【点睛】

    本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.

    三、解答题

    1、成立,证明见解析

    【分析】

    根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF

    【详解】

    解:成立.

    证明:将绕点顺时针旋转,得到

    三点共线,

    【点睛】

    本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.

    2、(1)见详解;(2)7

    【分析】

    (1)根据切线的性质和矩形的判定定理即可得到结论;

    (2)根据切线长定理可得AB=ACBE=DE,再利用勾股定理即可求解.

    【详解】

    (1)证明:∵DE的两条切线,于点

    ∴∠EFC=∠EDC=∠FCD=90°,

    ∴四边形是矩形;

    (2)∵四边形是矩形,

    EF=CF=

    DE的两条切线,

    AB=ACBE=DE

    AB=AC=x,则AE=x+2,AF=x-2,

    中,

    解得:x=5,

    AC=5+2=7.

    【点睛】

    本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.

    3、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).

    【分析】

    (1)3=OC=OA=3OB,故点ABC的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;

    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;

    (3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.

    【详解】

    解:(1)令x=0,则y=3,

    则点A的坐标为(3,0),

    根据题意得:OC=3=OA=3OB

    故点BC的坐标分别为:(-1,0)、(3,0),

    则抛物线的表达式为:y=ax+1)(x-3)=ax2-2x-3),

    把(3,0)代入得-3a=3,

    解得:a=-1,

    故抛物线的表达式为:y=-x2+2x+3;

    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),

    RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),

    则圆的半径为:

    (3)过点AC分别作直线AC的垂线,交抛物线分别为PP1

    设点P(x,-x2+2x+3),过点PPQ轴于点Q

    OA =OC,∠PAC=90°,

    ∴∠ACO=∠OAC=45°,

    ∵∠PAC=90°,

    ∴∠PAQ=45°,

    ∴△PAQ 是等腰直角三角形,

    PQ=AQ=x

    AQ+AO=x+3=-x2+2x+3,

    解得:(舍去),

    ∴点P(1,4);

    设点P1(m,-m2+2m+3),过点P1P1D轴于点D

    同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m<0,

    P1D=CD=m2-2m-3,DO=-m

    DO+OC= P1D,即-m+3= m2-2m-3,

    解得:(舍去),

    ∴点P(-2,-5);

    综上,点P(1,4)或(-2,-5).

    【点睛】

    本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏.

    4、(1)①BC;②;(2)

    【分析】

    (1)①分别找出点ABC到线段ON的最小值和最大值,是否满足“二分点”定义即可;

    ②对a的取值分情况讨论:,根据“二分点”的定义可求解;

    (2)设线段AN上存在的“二分点”为,对的取值分情况讨论,根据“二分点”的定义可求解.

    【详解】

    (1)①

    ∵点AON上,故最小值为0,不符合题意,

    BON的最小值为,最大值为

    ∴点B是线段ON的“二分点”,

    CON的最小值为1,最大值为

    ∴点C是线段ON的“二分点”,

    故答案为:BC

    ②若时,如图所示:

    COD的最小值为,最大值为

    ∵点C为线段OD的“二分点”,

    解得:

    ,如图所示:

    COD的最小值为1,最大值为,满足题意;

    时,如图所示:

    COD的最小值为1,最大值为

    ∵点C为线段OD的“二分点”,

    解得:(舍);

    时,如图所示:

    COD的最小值为,最大值为

    ∵点C为线段OD的“二分点”,

    解得:(舍),

    综上所得:a的取值范围为

    (2)

    如图所示,设线段AN上存在的“二分点”为

    时,最小值为:,最大值为:

    ,即

    时,最小值为:,最大值为:

    ∴∴,即

    不存在;

    时,最小值为:,最大值为:

    ,即

    不存在;

    时,最小值为:,最大值为:

    ,即

    综上所述,r的取值范围为

    【点睛】

    本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.

    5、(1)20°;(2);(3)AF= CF+BF,理由见解析

    【分析】

    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∠CBF=∠ABE-∠ABC=20°;

    (2)同(1)求解即可;

    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明FCG三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF

    【详解】

    解:(1)∵△ABC是等边三角形,

    AB=AC,∠BAC=∠ABC=60°,

    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE

    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE

    ∴∠CBF=∠ABE-∠ABC=20°;

    (2)∵△ABC是等边三角形,

    AB=AC,∠BAC=∠ABC=60°,

    由折叠的性质可知,AC=AE

    AB=AE

    (3)AF= CF+BF,理由如下:

    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG

    AF=AG,∠FAG=60°,∠ACG=∠ABFBF=CG

    在△AEF和△ACF中,

    ∴△AEF≌△ACFSAS),

    ∴∠AFE=∠AFC

    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,

    ∴∠BFD=∠ACD=60°,

    ∴∠AFE=∠AFC=60°,

    ∴∠BFC=120°,

    ∴∠BAC+∠BFC=180°,

    ∴∠ABF+∠ACF=180°,

    ∴∠ACG+∠ACF=180°,

    FCG三点共线,

    ∴△AFG是等边三角形,

    AF=GF=CF+CG=CF+BF

    【点睛】

    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课后练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后练习题,共30页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试练习:

    这是一份初中数学第24章 圆综合与测试练习,共26页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试练习:

    这是一份初中数学第24章 圆综合与测试练习,共29页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map