数学九年级下册第24章 圆综合与测试课时训练
展开这是一份数学九年级下册第24章 圆综合与测试课时训练,共31页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
2、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
A.cm B.cm C.cm D.cm
3、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是( )
A.AM=BM B.CM=DM C. D.
4、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
A. B.
C. D.
5、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
6、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )
A.22.5° B.45° C.90° D.67.5°
7、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
8、下列语句判断正确的是( )
A.等边三角形是轴对称图形,但不是中心对称图形
B.等边三角形既是轴对称图形,又是中心对称图形
C.等边三角形是中心对称图形,但不是轴对称图形
D.等边三角形既不是轴对称图形,也不是中心对称图形
9、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )
A.45° B.60° C.90° D.120°
10、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.
2、一个五边形共有__________条对角线.
3、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.
4、圆锥的母线长为,底面圆半径为r,则全面积为______.
5、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.
(1)求的度数;
(2)若,且,求DF的长.
2、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
已知点O(0,0),Q(1,0)
(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
(2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
(3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围
3、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.
(1)求∠ABD的度数;
(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;
(3)在(2)的条件下,求的长.
4、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长.
5、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与△PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F.
(1)如图,当点P在线段AB上运动时,若∠DBE=30°,PB=2,求DE的长;
(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明.
-参考答案-
一、单选题
1、C
【分析】
由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
2、C
【分析】
直接根据题意及弧长公式可直接进行求解.
【详解】
解:由题意得:的圆心角所对弧的弧长是;
故选C.
【点睛】
本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
3、B
【分析】
根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.
【详解】
解:∵弦AB⊥CD,CD过圆心O,
∴AM=BM,,,
即选项A、C、D选项说法正确,不符合题意,
当根据已知条件得CM和DM不一定相等,
故选B.
【点睛】
本题考查了垂径定理,解题的关键是掌握垂径定理.
4、C
【分析】
利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
【详解】
解:A、不是中心对称图形,故A错误.
B、不是中心对称图形,故B错误.
C、是中心对称图形,故C正确.
D、不是中心对称图形,故D错误.
故选:C.
【点睛】
本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
5、C
【详解】
解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
选项B不是轴对称图形,是中心对称图形,故B不符合题意;
选项C既是轴对称图形,也是中心对称图形,故C符合题意;
选项D是轴对称图形,不是中心对称图形,故D不符合题意;
故选C
【点睛】
本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
6、B
【分析】
根据同弧所对的圆周角是圆心角的一半即可得.
【详解】
解:∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
7、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
8、A
【分析】
根据等边三角形的对称性判断即可.
【详解】
∵等边三角形是轴对称图形,但不是中心对称图形,
∴B,C,D都不符合题意;
故选:A.
【点睛】
本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
9、B
【分析】
设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
【详解】
解:设∠ADC=α,∠ABC=β;
∵四边形ABCO是菱形,
∴∠ABC=∠AOC;
∠ADC=β;
四边形为圆的内接四边形,
α+β=180°,
∴ ,
解得:β=120°,α=60°,则∠ADC=60°,
故选:B.
【点睛】
该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
10、A
【分析】
如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
【详解】
解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
四边形为正方形,则
设 而AB=2,CD=3,EF=5,结合正方形的性质可得:
而
又 而
解得:
故选A
【点睛】
本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
二、填空题
1、
【分析】
根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即.
【详解】
解:在中,,
,
.
故答案为:
【点睛】
本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.
2、5
【分析】
由n边形的对角线有: 条,再把代入计算即可得.
【详解】
解:边形共有条对角线,
五边形共有条对角线.
故答案为:5
【点睛】
本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.
3、
【分析】
先根据旋转的性质求得,再运用三角形内角和定理求解即可.
【详解】
解:将△ABC绕点A顺时针旋转得到△ADE,∠DAE=110°
,
,
.
故答案是:30°.
【点睛】
本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键.
4、
【分析】
根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.
【详解】
解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,
故可得,这个扇形的半径为,扇形的弧长为,
圆锥的侧面积为;
圆锥的全面积为圆锥的底面积侧面积:.
故答案为:.
【点睛】
本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.
5、
【分析】
如图连接并延长,过点作交于点,,由题意可知为等边三角形,,,在中;在中计算求解即可.
【详解】
解:如图连接并延长,过点作交于点,
由题意可知,,为等边三角形
在中
在中
故答案为:.
【点睛】
本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.
三、解答题
1、(1)45°;(2)
【分析】
(1)根据旋转的性质得,,,,通过等量代换及三角形内角和得,根据四点共圆即可求得;
(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.
【详解】
解:(1)由旋转可知:
,,,,
∴,,.
由三角形内角和定理得,
∴点A,D,F,E共圆.
∴.
(2)连接EB,
∵,
∴.
∵,
∴.
又∵,,
∴.
∴,.
∴.
在中,,,,
∵,
∴.
【点睛】
本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.
2、(1);(2);(3)或
【分析】
(1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;
(2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO≤2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;
(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而PO<PQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.
【详解】
解:(1) O(0,0),Q(1,0),
P1(0,-1),P2(,),P3(-1,1)
不满足OQ<PO<PQ且PO≤2,
所以不是线段OQ的“潜力点”,
同理:
所以不满足OQ<PO<PQ且PO≤2,
所以不是线段OQ的“潜力点”,
同理:
所以满足:OQ<PO<PQ且PO≤2,
所以是线段OQ的“潜力点”,
故答案为:P3
(2)∵点P为线段OQ的“潜力点”,
∴OQ<PO<PQ且PO≤2,
∵OQ<PO,
∴点P在以O为圆心,1为半径的圆外
∵PO<PQ,
∴点P在线段OQ垂直平分线的左侧,而的垂直平分线为:
∵PO≤2,
∴点P在以O为圆心,2为半径的圆上或圆内
又∵点P在直线y=x上,
∴点P在如图所示的线段AB上(不包含点B)
过作轴,过作轴,垂足分别为
由题意可知△BOC和 △AOD是等腰三角形,
∴
∴-≤xp<-
(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
而PO<PQ,点P在线段OQ垂直平分线的左侧
当时,过时,
即函数解析式为:
此时 则
当与半径为2的圆相切于时,则
由
而
当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
而PO<PQ,点P在线段OQ垂直平分线的左侧,
同理:当过 则 直线为
在直线上,
此时
当过时, 则
所以此时:
综上:的范围为:1<b≤或<b<-1
【点睛】
本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.
3、(1);(2);(3)
【分析】
(1)如图,过作 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;
(2)先求解 再结合(1)的结论可得答案;
(3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.
【详解】
解:(1)如图,过作 垂足分别为 连接
四边形为矩形,
由勾股定理可得: 而
四边形为正方形,
而
(2)如图,过作 垂足分别为
由(1)得:四边形为正方形,
OA=2,∠OAB=15°,
(3)如图,连接
【点睛】
本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.
4、
(1)见解析
(2)
【分析】
(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;
(2)证明,得出对应边成比例,即可求出的长.
(1)
证明:连接,如图所示:
是的直径,
,
,
,
,
,
,
即,
是的切线;
(2)
解:的半径为,
,,
,
,
,
,
,
又,
,
,
即,
.
【点睛】
本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.
5、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析
【分析】
(1)根据△PBD等腰直角三角形,PB=2,求出DB的长,由⊙O是△PBD的外接圆,∠DBE=30°,可得答案;
(2)根据同弧所对的圆周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可证△APD≌△FPB,可得答案.
【详解】
解:(1)由题意画以下图,连接EP,
∵△PBD等腰直角三角形,⊙O是△PBD的外接圆,
∴∠DPB=∠DEB=90°,
∵PB=2,
∴ ,
∵∠DBE=30°,
∴
(2)①点P在点A、B之间,
由(1)的图根据同弧所对的圆周角相等,可得:
∠ADP=∠FBP,
又∵△PBD等腰直角三角形,
∴∠DPB=∠APD=90°,DP=BP,
在△APD和△FPB中
∴△APD≌△FPB
∴AP=FP,
∵AP+PB=AB
∴FP+PB=AB,
∴FP=AB-PB,
②点P在点B的右侧,如下图:
∵△PBD等腰直角三角形,
∴∠DPB=∠APF=90°,DP=BP,
∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,
∴∠PBF=∠PDA,
在△APD和△FPB中
∴△APD≌△FPB
∴AP=FP,
∴AB+PB=AP,
∴AB+PB=PF,
∴PF= AB+PB.
综上所述,FP=AB-PB或PF= AB+PB.
【点睛】
本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共32页。
这是一份九年级下册第24章 圆综合与测试一课一练,共33页。
这是一份初中第24章 圆综合与测试同步训练题,共40页。试卷主要包含了等边三角形,下列判断正确的个数有等内容,欢迎下载使用。