终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专项训练试卷(精选含答案)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专项训练试卷(精选含答案)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专项训练试卷(精选含答案)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专项训练试卷(精选含答案)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试同步练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共32页。


    沪科版九年级数学下册第24章圆专项训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )
    A. B.
    C. D.
    2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )

    A.3 B.1 C. D.
    3、下列图形中,既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    4、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    5、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )

    A.3 B.2 C.1 D.
    6、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
    A.cm B.cm C.cm D.cm
    7、的边经过圆心,与圆相切于点,若,则的大小等于( )

    A. B. C. D.
    8、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    9、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )

    A. B. C. D.
    10、如图,是的直径,弦,垂足为,若,则( )

    A.5 B.8 C.9 D.10
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.

    2、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.
    3、平面直角坐标系中,,,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当BK取最小值时,点B的坐标为_________.
    4、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.

    5、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.

    三、解答题(5小题,每小题10分,共计50分)
    1、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.

    (1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段A′D之间的数量关系,并证明你的结论.
    (2)将Rt△ABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
    (3)将Rt△ABC旅转至A、C′、A′三点在一条直线上时,请直接写出此时旋转角α的度数.
    2、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.

    (1)求证:CD是⊙O的切线.
    (2)若,求阴影部分的面积.
    3、如图,是⊙的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H.

    (1)判断与⊙的位置关系并说明理由;
    (2)若,求弧的长.
    4、如图,已知AB是⊙O的直径,⊙O过BC的中点D,且.

    (1)求证:DE是⊙O的切线;
    (2)若,,求的半径.
    5、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.
    (1)求证:AD∥EC;
    (2)若AD=6,求线段AE的长.


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A.是轴对称图形,不是中心对称图形,故此选项不合题意;
    B.不是轴对称图形,是中心对称图形,故此选项不符合题意;
    C.是轴对称图形,也是中心对称图形,故此选项合题意;
    D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2、D
    【分析】
    根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.
    【详解】
    解:如图,设与相交于点,

    ,,

    旋转,

    是等边三角形,
    ,,





    阴影部分的面积为
    故选D
    【点睛】
    本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.
    3、D
    【详解】
    解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    .不是轴对称图形,是中心对称图形,故本选项不符合题意;
    .是轴对称图形,不是中心对称图形,故本选项不符合题意;
    .既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、C
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    5、B
    【分析】
    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
    【详解】
    解:连接OC,如图

    ∵AB 为⊙O 的直径,CD^AB,垂足为点 E,CD=8,
    ∴,
    ∵,
    ∴,
    ∴;
    故选:B.
    【点睛】
    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
    6、C
    【分析】
    直接根据题意及弧长公式可直接进行求解.
    【详解】
    解:由题意得:的圆心角所对弧的弧长是;
    故选C.
    【点睛】
    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
    7、A
    【分析】
    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
    【详解】
    解:连接,



    与圆相切于点,


    故选:A.
    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    8、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    9、C
    【分析】
    如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.
    【详解】
    解:如图,过点C作 CT⊥AB 于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,

    由题意可得AB垂直平分线段OK,
    ∴AO=AK,OH=HK=3,
    ∵OA=OK,
    ∴OA=OK=AK,
    ∴∠OAK=∠AOK=60°,
    ∴AH=OA×sin60°=6×=3,
    ∵OH⊥AB,
    ∴AH=BH,
    ∴AB=2AH=6,
    ∵OC+OH⩾CT,
    ∴CT⩽6+3=9,
    ∴CT的最大值为9,
    ∴△ABC的面积的最大值为=27,
    故选:C.
    【点睛】
    本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.
    10、C
    【分析】
    连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得
    【详解】
    解:如图,连接,

    ∵是的直径,弦,

    设的半径为,则
    在中,,

    解得


    故选C
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    二、填空题
    1、
    【分析】
    连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
    【详解】
    解:如图所示,连接OB,交AC于点D,

    ∵四边形OABC为平行四边形,,
    ∴四边形OABC为菱形,
    ∴,,,
    ∵,
    ∴为等边三角形,
    ∴,
    ∴,
    在中,设,则,
    ∴,
    即,
    解得:或(舍去),
    ∴的长为:,
    故答案为:.
    【点睛】
    题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
    2、在⊙A上
    【分析】
    先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.
    【详解】
    解:∵点A的坐标为(4,3),
    ∴OA==5,
    ∵半径为5,
    ∴OA=r,
    ∴点O在⊙A上.
    故答案为:在⊙A上.
    【点睛】
    本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔d>r;当点P在圆上⇔d=r;当点P在圆内⇔d<r.
    3、
    【分析】
    如图,作BH⊥x轴于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,作KM⊥EF于M,根据垂线段最短可知,当点B与点M重合时,BK的值最小,利用等腰直角三角形的性质可得M的坐标,从而可得答案.
    【详解】
    解:如图,作BH⊥x轴于H.

    ∵C(0,4),K(2,0),
    ∴OC=4,OK=2,
    ∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,
    ∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,
    ∴∠ACO=∠BAH,
    ∴△ACO≌△BAH(AAS),
    ∴BH=OA=m,AH=OC=4,
    ∴B(m+4,m),
    令x=m+4,y=m,
    ∴y=x﹣4,
    ∴点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,


    作KM⊥EF于M,过作于 则

    根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,﹣1),
    故答案为:(3,﹣1)
    【点睛】
    本题考查坐标与图形的变化﹣旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题.
    4、5
    【分析】
    设⊙O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.
    【详解】
    解:设⊙O的半径为r,则OC=OA=r,OE=OC-CE=r-2,
    ∵OC⊥AB,AB=8,
    ∴AE=BE=AB=4,
    在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,
    解得:r=5,
    即⊙O的半径长为5,
    故答案为:5.
    【点睛】
    本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.
    5、70°度
    【分析】
    连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.
    【详解】
    解:连接OA、OB,
    ∵PA,PB分别切⊙O于点A,B,
    ∴∠OAP=∠OBP=90°,又∠P=40°,
    ∴∠AOB=360°-90°-90°-40°=140°,
    ∴∠Q=∠AOB=70°,
    故答案为:70°.

    【点睛】
    本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.
    三、解答题
    1、
    (1),证明见解析
    (2)成立,证明见解析
    (3)
    【分析】
    (1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得,,都是等边三角形,从而可得,由此即可得出结论;
    (2)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;
    (3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得.
    (1)
    解:,证明如下:
    设,
    在中,,

    由旋转的性质得:,
    ,和都是等边三角形,


    是等边三角形,


    (2)
    解:成立,证明如下:
    如图,在上截取,连接,

    由旋转的性质得:,


    在和中,,





    (3)
    解:如图,当点三点在一条直线上时,

    由旋转的性质得:,

    在和中,,


    则旋转角.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.
    2、(1)见详解;(2)
    【分析】
    (1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得OD∥AC,最后问题可求证;
    (2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.
    【详解】
    (1)证明:连接OD,如图所示:

    ∵四边形BDEO是平行四边形,
    ∴,
    ∴△ODB是等边三角形,
    ∴∠OBD=∠BOD=60°,
    ∴∠AOE=∠OBD=60°,
    ∵OE=OA,
    ∴△AEO也为等边三角形,
    ∴∠EAO=∠DOB=60°,
    ∴AE∥OD,
    ∴∠ODC+∠C=180°,
    ∵CD⊥AE,
    ∴∠C=90°,
    ∴∠ODC=90°,
    ∵OD是圆O的半径,
    ∴CD是⊙O的切线.
    (2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,
    ∴∠EAO=∠CED=60°,
    ∵∠AOE+∠EOD+∠BOD=180°,
    ∴∠EOD=60°,
    ∴△DEO为等边三角形,
    ∴ED=OE=AE,
    ∵CD⊥AE,∠CED=60°,
    ∴∠CDE=30°,
    ∴,
    ∵,
    ∴,
    ∴,
    设△OED的高为h,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.
    3、
    (1)相切,见解析
    (2)
    【分析】
    (1)连接OC、OD、AC,OC交AF于点M,根据AG=CG,CD⊥AB,可得,从而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求证;
    (2)先证明四边形CMFH为矩形,可得OC⊥AF,CM=HF=2,从而得到AM=FM,进而得到OM=BF=2,可得到CM=OM,进而得到 OC=4,AM垂直平分OC,可证得△AOC为等边三角形,即可求解.
    (1)
    解: CH与⊙O相切.
    理由如下:如图,连接OC、OD、AC,OC交AF于点M,

    ∵AG=CG,
    ∴∠ACG=∠CAG,
    ∴,
    ∵CD⊥AB,
    ∴,
    ∴,
    ∴OC⊥AF,
    ∵AB为直径,
    ∴∠AFB=90°,
    ∵BH⊥CH,
    ∴CH∥AF,
    ∴OC⊥CH,
    ∵OC为半径,
    ∴CH为⊙O的切线;
    (2)
    解:由(1)得:BH⊥CH,OC⊥CH,
    ∴OC∥BH,
    ∵CH∥AF,
    ∴四边形CMFH为平行四边形,
    ∵OC⊥CH,
    ∴∠OCH=90°,
    ∴四边形CMFH为矩形,
    ∴OC⊥AF,CM=HF=2,
    ∴AM=FM,
    ∵点O为AB的中点,
    ∴OM=BF=2,
    ∴CM=OM,
    ∴OC=4,AM垂直平分OC,
    ∴AC=AO,
    而AO=OC,
    ∴AC=OC=OA,,
    ∴△AOC为等边三角形,
    ∴∠AOC=60°,
    ∵,
    ∴∠AOD=∠AOC=60°,
    ∴∠COD=120°,
    ∴弧CD的长度为.
    【点睛】
    本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键.
    4、(1)证明见解析;(2).
    【分析】
    (1)连接,只要证明即可.此题可运用三角形的中位线定理证,因为,所以.
    (2)根据直角三角形中角所对的直角边等于斜边的一半及勾股定理可分别求出的长和、的长,即可根据中位线性质求出的长,即的半径长.
    【详解】
    (1)证明:连接.

    因为是的中点,是的中点,




    ,是圆的半径,
    是的切线.
    (2)如图,,,
    ,,
    ,且,


    且,
    ∴,


    ∴ ,
    的半径长为.
    【点睛】
    本题考查了切线的判定、直角三角形中角所对的直角边等于斜边的一半、勾股定理等知识.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题.
    5、(1)见解析;(2)6
    【分析】
    (1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;
    (2)过点A作AF⊥EC交EC于点F,由∠AOC=,OA=OC,可得∠OAC=,从而得到∠BAD=,再由AD∥EC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.
    【详解】
    证明:(1)连接OC,

    ∵CE是⊙O的切线,
    ∴∠OCE=,
    ∵∠ABC=,
    ∴∠AOC=2∠ABC=,
    ∵∠AOC+∠OCE=,
    ∴AD∥EC;
    (2)解:过点A作AF⊥EC交EC于点F,
    ∵∠AOC=,OA=OC,
    ∴∠OAC=,
    ∵∠BAC=,
    ∴∠BAD=,
    ∵AD∥EC,
    ∴,
    ∵∠OCE=,∠AOC=,∠AFC=90°,
    ∴四边形OAFC是矩形,
    ∵OA=OC,
    ∴四边形OAFC是正方形,
    ∴,
    ∵,
    ∴,
    在Rt△AFE中,,
    ∴AE=2AF=6.
    【点睛】
    本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共33页。

    初中数学沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共32页。

    数学第24章 圆综合与测试课后练习题:

    这是一份数学第24章 圆综合与测试课后练习题,共29页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map